一、简介
说明了斜抛物体在斜坡上的射程计算方法,求出了最大射程与坡度关系,详细讨论了射程与坡度的关系。通过图片显示射程与射角的关系,最大射程与坡度的关系。
二、源代码
%斜抛物体的射程,射高和最高点的分布
clear %清除变量
theta=0:90; %物体射角的度数向量
th=theta*pi/180; %物体射角的弧度数
x=sin(2*th); %水平射程(以最大射程为单位)
y=sin(th).^2/2; %竖直射高(以最大射程为单位)
figure %创建图形窗口
plot(theta,x,theta,y,'--','linewidth',2)%画射程和射高曲线
grid on %加网格
legend('射程\itX/X\rm_M','射高\itY/X\rm_M')%图例
fs=16; %字体大小
title('斜抛物体的水平射程和竖直射高','FontSize',fs)%标题
xlabel('射角\it\theta/\rm(\circ)','FontSize',fs)%横坐标标签
text(0,0.5,'\itX\rm_M=\itv\rm_0^2/\itg','FontSize',fs)%说明最大射程
theta=15:10:75; %物体射角的度数向量
th=theta*pi/180; %物体射角的弧度数
x=linspace(0,1,40); %水平坐标向量(以最大射程为单位)
[TH,X]=meshgrid(th,x); %水平坐标和角度和矩阵
Y=X.*tan(TH)-X.^2/2./cos(TH).^2; %高度位置矩阵
figure %创建图形窗口
%plot(x,Y,'LineWidth',2) %画斜抛运动曲线族
plot(x,Y(:,1),'o-',x,Y(:,2),'d-',x,Y(:,3),'s-',x,Y(:,4),'p-',...
x,Y(:,5),'h-',x,Y(:,6),'<-',x,Y(:,7),'>-','LineStyle','--')%画斜抛运动曲线族
grid on %加网格
axis equal %使坐标刻度相等
axis([0 1 0 0.5]) %曲线范围
n=length(th); %射角的个数
h=legend([num2str(theta'),repmat('\circ',n,1)]);%插入角度图例
set(h,'FontSize',fs-2) %放大图例
y0=zeros(size(th)); %落点纵坐标向量
x0=sin(2*th); %落点横坐标向量(射高的横坐标的两倍)
text(x0,y0,num2str(x0',3),'FontSize',fs)%标记射程(保留3位)
ym=sin(th).^2/2; %射高
text(x0/2,ym,num2str(ym',3),'FontSize',fs)%标记射高(保留3位)
hold on %保持图像
三、运行结果
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
2 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类