1 简介
相比于传统的 SIFT 算法,SAR-SIFT 主要在两个方面进行了修改,首先是改进了像素点梯度计算方法,用比值代替了差值。其次是改进了最终描述子生成的方法。通过这两个方面的修改,使得这种方法更适用于一般乘性斑点噪声的 SAR 图像。对于 SAR 图像中的乘性噪声,SAR-SIFT 在一定程度上相比原始 SIFT 具有更好的适应性,但是当 SAR 图像中具有强噪声斑点的干扰时,SAR-SIFT 算法提取特征点时也会存在大量的异常点。针对 SAR 图片中强乘性斑点噪声问题,首先借助SAR-SIFT 算法提取出来特征,然后通过稀疏编码有效地利用特征聚类来剔除在特征提取过程中那些由于强斑点噪声而导致的异常点。从而通过 SAR-SIFT 算法结合FSC 算法来抑制 SAR 图像中的噪声斑点,提高 SAR 图像配准的精度和鲁棒性。