【图像配准】基于SAR-SIFT改进的SAR图像配准附matlab代码

本文介绍了SAR-SIFT算法在处理SAR图像配准中的优势,针对乘性斑点噪声问题,通过改进像素梯度计算和描述子生成方法提高算法适应性。同时,提出结合FSC算法来抑制噪声斑点,提升配准精度和鲁棒性。附带matlab代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 简介

相比于传统的 SIFT 算法,SAR-SIFT 主要在两个方面进行了修改,首先是改进了像素点梯度计算方法,用比值代替了差值。其次是改进了最终描述子生成的方法。通过这两个方面的修改,使得这种方法更适用于一般乘性斑点噪声的 SAR 图像。对于 SAR 图像中的乘性噪声,SAR-SIFT 在一定程度上相比原始 SIFT 具有更好的适应性,但是当 SAR 图像中具有强噪声斑点的干扰时,SAR-SIFT 算法提取特征点时也会存在大量的异常点。针对 SAR 图片中强乘性斑点噪声问题,首先借助SAR-SIFT 算法提取出来特征,然后通过稀疏编码有效地利用特征聚类来剔除在特征提取过程中那些由于强斑点噪声而导致的异常点。从而通过 SAR-SIFT 算法结合FSC 算法来抑制 SAR 图像中的噪声斑点,提高 SAR 图像配准的精度和鲁棒性。​

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值