✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🌿 往期回顾可以关注主页,点击搜索
🔥 内容介绍
心电信号处理是国内外近年来迅速发展的一个研究热点,是现代生命科学研究的重要组成部分,其目的是为了从获得的信号中提取有用信息。心电图反应人体心脏工作状况,各个波形的不同形式往往体现了某些病变。本实验通过对心电信号的产生、采集、分析、处理,可以有效的监测人的心脏和血压的健康状况。
关键词:心电信号、QRS波群、信号处理
一、设计原理
1、肌电干扰的滤除
肌电干扰由人体肌肉颤动引起,发生率具有随机性,频率范围为20-500Hz,其主要成分的频率与肌肉的类型有关,一般在30-300Hz,而心电信号的频率主要集中在5~20HZ,所以选择低通滤波器来滤除肌电干扰。
巴特沃斯滤波器的特点是通频带内的频率响应曲线最大限度平坦,没有起伏,而在阻频带则逐渐下降为零。 在振幅的对数对角频率的波得图上,从某一边界角频率开始,振幅随着角频率的增加而逐步减少,趋向负无穷大。
2、工频干扰的抑制
工频干由于供电网络无所不在,因此50Hz的工频干扰是最普遍的,也是心电信号的主要干扰来源。50HZ陷波器的软件设计方法多种多样,常见方法有小波变换滤波、自适应滤波、模板匹配滤波等,但都需要手工计算获得滤波器的参数,运算比较复杂。
巴特沃斯带阻滤波器又称简单整系数带阻滤波器,其原理为一个全通网络,减去一个具有相同延迟和增益的窄带线性相位FIR滤波器,得到一个具有尖锐陷波特性的陷波滤波器。阻带下限截止频率fc1 = 49 Hz,阻带上限截止频率fc2 = 51 Hz,就可以消除50 Hz 的工频干扰。
3、基线漂移的纠正
某些数字信号中会含有基线干扰信号(低频噪音)。因此可以使用低通滤波器首先提取出低频噪音,然后再用原始信号减去低频噪音就可以得到去除了基线漂移的心电信号。
4、qrs波群
Q波和S波通常是低幅高频波,一般Q波位于S波之前,S波位于R波之后,由于他们是一般向下的波,所以他们的峰值点和极值是对应的。因次在检测到R波向左和向右分别搜寻到极值点,对应的就是Q波和S波。
📣 部分代码
<span style="color:#333333"><span style="background-color:#fafafa"><code>%%%%%%%%%% 数据读取</code><code>ECG=load('1record.dat');</code><code>l=length(ECG);</code><code>t=(150/l:150/l:30);</code><code>x=ECG(4,:); %可取不同的组</code><code>y=x(1:5:end);</code><code>figure(1)</code><code>plot(t, 20*log(abs(y)));</code><code>title('含噪心电信号');</code><code>xlabel('时间(s)');</code><code>ylabel('幅度(dB)');</code><code>axis([0 15 179 183])</code><code> </code><code>%%%%%%%%%% 频域分析</code><code>n=4000;</code><code>m=abs(fft(y,n));</code><code>fs=200;</code><code>f=fs/n*(0:n-1);</code><code>figure(2)</code><code>plot(f, m);</code><code>title('心电信号的频谱图');</code></span></span>
⛳️ 运行结果
🔗 参考文献
四、[1] 姜增如.MATLAB基础应用案例教程. 北京:北京理工大学出版社,2016
[2] 夏爱生,刘俊峰.数学建模与MATLAB应用.北京:北京理工大学出版社,2016
[3] 蒋珉.MATLAB程序设计及应用.北京:北京邮电大学出版社,2015
[4] 吴水才.医学信号处理及应用.北京:北京工业大学出版社,2017
[5] 谢平.信号处理原理与应用.北京:清华大学出版社,2017
[6] 马立玲,沈伟.信号分析与处理.北京:北京理工大学出版社,2019
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类