2D 网格输出:不平等满足情况的可视化matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🌿 往期回顾可以关注主页,点击搜索

🔥 内容介绍

在数据分析和可视化领域,二维网格图(2D mesh)是一种常见的工具,用于展示多变量数据之间的关系。当涉及到不平等关系时,2D 网格图可以提供一种直观的方式来理解不同参数组合下,不平等条件是否满足。本文将深入探讨这种可视化方法,并阐明其在各种应用中的价值。

一、2D 网格图的基本原理

2D 网格图本质上是一个由行和列组成的网格,每个网格点代表一个唯一的参数组合。通常,横坐标和纵坐标分别对应两个关键参数。每个网格点通过颜色或符号进行标记,以指示其所代表的参数组合是否满足预定的不平等条件。

二、不平等关系的可视化

不平等关系是指两个变量或表达式之间存在的大小比较关系,例如:

  • 大于 (>): 当一个表达式大于另一个表达式时,不平等关系成立。

  • 小于 (<): 当一个表达式小于另一个表达式时,不平等关系成立。

  • 大于等于 (>=): 当一个表达式大于等于另一个表达式时,不平等关系成立。

  • 小于等于 (<=): 当一个表达式小于等于另一个表达式时,不平等关系成立。

在 2D 网格图中,每个网格点都代表一个参数组合。通过将该参数组合代入不平等关系表达式,我们可以判断该点是否满足不平等条件。例如,如果使用表达式 "x > y",则网格中所有 x 值大于 y 值的点将被标记为满足条件。

三、应用场景

2D 网格图在各种应用场景中都非常有用,例如:

  • 约束条件可视化: 在优化问题中,通常存在一些约束条件,这些条件限制了可行解的范围。使用 2D 网格图可以清晰地展示这些约束条件,帮助我们理解可行解区域。

  • 决策分析: 在决策问题中,我们经常需要考虑多个因素,并根据不同的因素组合做出最佳决策。2D 网格图可以帮助我们可视化不同决策方案的优劣,以及其对目标函数的影响。

  • 数据挖掘: 在数据挖掘中,2D 网格图可以用于识别数据中的模式和趋势。例如,我们可以使用网格图来可视化不同特征之间的关系,从而发现潜在的规则或规律。

  • 机器学习: 在机器学习中,2D 网格图可以用于可视化模型的预测结果。例如,我们可以使用网格图来展示不同输入参数下,模型的输出值,从而理解模型的预测能力和偏差。

四、示例说明

假设我们要分析一个投资组合的收益率和风险之间的关系。假设收益率 (y) 与风险 (x) 之间的关系可以用以下公式表示:

y = 0.05x + 0.1

现在,我们想分析在不同风险水平下,投资组合的收益率是否超过某个阈值 (例如,y > 0.2)。可以使用 2D 网格图来可视化该关系。

首先,我们创建一个横坐标表示风险 (x),纵坐标表示收益率 (y) 的网格。然后,我们根据公式计算每个网格点的收益率值。对于所有满足 y > 0.2 的网格点,我们将它们标记为绿色,表示满足条件;对于所有不满足 y > 0.2 的网格点,我们将它们标记为红色,表示不满足条件。

通过这个 2D 网格图,我们可以直观地看到,当风险水平超过某个阈值时,投资组合的收益率才能超过目标阈值。这对于投资者在进行投资决策时,可以提供参考依据。

五、总结

2D 网格图是一种简单但强大的工具,可以帮助我们可视化不平等关系,并理解不同参数组合对结果的影响。在数据分析、决策分析、数据挖掘和机器学习等领域,这种可视化方法都具有重要的应用价值。通过利用 2D 网格图,我们可以更有效地分析数据,发现模式,并做出更明智的决策。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9  雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值