✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🌿 往期回顾可以关注主页,点击搜索
🔥 内容介绍
图像分割是计算机视觉中的一个基本任务,其目标是将图像分成多个具有不同特征的区域,以便于后续的图像分析和理解。在众多图像分割方法中,基于阈值分割法凭借其简单、快速、易于实现的特点而被广泛应用。而OTSU算法作为一种经典的自动阈值分割方法,利用图像直方图的统计特征来寻找最佳阈值,从而实现图像的二值化分割。
本文将深入探讨基于OTSU法实现图像分割的原理,并结合香农熵阈值迭代算法来提升分割效果。我们将从图像直方图、OTSU算法原理、香农熵阈值迭代算法以及应用示例等方面进行详细阐述。
1. 图像直方图
图像直方图是描述图像灰度值分布的统计工具,它以灰度值作为横坐标,以该灰度值出现的频率作为纵坐标,绘制出的图形。图像直方图可以反映图像的整体亮度、对比度和灰度分布情况,为图像分割提供了重要的参考信息。
2. OTSU算法原理
OTSU算法(Optimal Thresholding)是一种自动阈值分割方法,其基本思想是:在图像直方图中寻找一个最佳阈值,将图像分成前景和背景两部分,使得前景和背景之间的类间方差最大,同时类内方差最小。
OTSU算法的具体步骤如下:
-
计算图像直方图,统计每个灰度值出现的频率。
-
遍历所有可能的阈值,将图像分割成两部分。
-
计算每一阈值下,前景和背景的类内方差以及类间方差。
-
选择类间方差最大的阈值作为最佳分割阈值。
3. 香农熵阈值迭代算法
OTSU算法虽然简单有效,但当图像存在噪声或对比度较低时,分割效果可能不理想。为了进一步提升分割效果,可以结合香农熵阈值迭代算法进行优化。
香农熵是信息论中的重要概念,用于衡量信息的不确定性。在图像分割中,香农熵可以用于评估图像中每个像素属于前景或背景的概率分布。香农熵阈值迭代算法的基本思想是:
-
利用OTSU算法获得初始阈值。
-
迭代计算每个像素属于前景或背景的概率分布,并根据概率分布计算香农熵。
-
选择香农熵最小的阈值作为最终的分割阈值。
4.
本文介绍了基于OTSU法实现图像分割的原理,并结合香农熵阈值迭代算法来提升分割效果。OTSU算法是一种简单高效的自动阈值分割方法,可以有效地将图像分割成前景和背景。香农熵阈值迭代算法通过引入信息熵的概念,可以进一步优化分割结果,提高分割精度。
⛳️ 运行结果
🔗 参考文献
[1]曾磊.基于Otsu法自适应阈值的图像分割研究[J].信息技术, 2008, 32(10):3.DOI:10.3969/j.issn.1009-2552.2008.10.027.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类