【图像分割】基于OTSU法实现图像分割,香农熵阈值迭代 最佳阈值 直方图附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🌿 往期回顾可以关注主页,点击搜索

🔥 内容介绍

图像分割是计算机视觉中的一个基本任务,其目标是将图像分成多个具有不同特征的区域,以便于后续的图像分析和理解。在众多图像分割方法中,基于阈值分割法凭借其简单、快速、易于实现的特点而被广泛应用。而OTSU算法作为一种经典的自动阈值分割方法,利用图像直方图的统计特征来寻找最佳阈值,从而实现图像的二值化分割。

本文将深入探讨基于OTSU法实现图像分割的原理,并结合香农熵阈值迭代算法来提升分割效果。我们将从图像直方图、OTSU算法原理、香农熵阈值迭代算法以及应用示例等方面进行详细阐述。

1. 图像直方图

图像直方图是描述图像灰度值分布的统计工具,它以灰度值作为横坐标,以该灰度值出现的频率作为纵坐标,绘制出的图形。图像直方图可以反映图像的整体亮度、对比度和灰度分布情况,为图像分割提供了重要的参考信息。

2. OTSU算法原理

OTSU算法(Optimal Thresholding)是一种自动阈值分割方法,其基本思想是:在图像直方图中寻找一个最佳阈值,将图像分成前景和背景两部分,使得前景和背景之间的类间方差最大,同时类内方差最小。

OTSU算法的具体步骤如下:

  1. 计算图像直方图,统计每个灰度值出现的频率。

  2. 遍历所有可能的阈值,将图像分割成两部分。

  3. 计算每一阈值下,前景和背景的类内方差以及类间方差。

  4. 选择类间方差最大的阈值作为最佳分割阈值。

3. 香农熵阈值迭代算法

OTSU算法虽然简单有效,但当图像存在噪声或对比度较低时,分割效果可能不理想。为了进一步提升分割效果,可以结合香农熵阈值迭代算法进行优化。

香农熵是信息论中的重要概念,用于衡量信息的不确定性。在图像分割中,香农熵可以用于评估图像中每个像素属于前景或背景的概率分布。香农熵阈值迭代算法的基本思想是:

  1. 利用OTSU算法获得初始阈值。

  2. 迭代计算每个像素属于前景或背景的概率分布,并根据概率分布计算香农熵。

  3. 选择香农熵最小的阈值作为最终的分割阈值。

4.

本文介绍了基于OTSU法实现图像分割的原理,并结合香农熵阈值迭代算法来提升分割效果。OTSU算法是一种简单高效的自动阈值分割方法,可以有效地将图像分割成前景和背景。香农熵阈值迭代算法通过引入信息熵的概念,可以进一步优化分割结果,提高分割精度。

⛳️ 运行结果

🔗 参考文献

[1]曾磊.基于Otsu法自适应阈值的图像分割研究[J].信息技术, 2008, 32(10):3.DOI:10.3969/j.issn.1009-2552.2008.10.027.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9  雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值