【信号去噪】基于粒子滤波器、正向向后平滑FBS和最大后后平滑MAP实现信号去噪附Matlab代码

✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

信号去噪是信号处理领域中一个重要的研究课题,其目的是从含有噪声的信号中恢复原始信号。本文将介绍三种常用的信号去噪方法:基于粒子滤波器的去噪方法、基于正向向后平滑 (FBS) 的去噪方法和基于最大后验平滑 (MAP) 的去噪方法。针对这三种方法,本文将深入探讨其理论基础、实现步骤以及各自的优缺点,并提供相应的 Matlab 代码示例。

1. 引言

在现实生活中,我们获取的信号通常会受到噪声的干扰,例如传感器误差、环境噪声等。这些噪声会严重影响信号的分析和处理,因此需要进行去噪操作。信号去噪的方法有很多,本文将重点介绍三种常用的方法:粒子滤波器、正向向后平滑和最大后验平滑。

2. 粒子滤波器去噪

2.1 理论基础

粒子滤波器是一种基于蒙特卡洛模拟的非线性滤波方法,适用于处理非线性、非高斯系统。其基本思想是利用粒子集合来近似表示信号的概率分布,并通过粒子权重的更新来反映信号状态的估计。

2.2 实现步骤

粒子滤波器去噪的实现步骤如下:

  1. 初始化粒子集合:随机生成一组粒子,并为每个粒子赋予初始权重。

  2. 预测阶段:根据系统模型,预测每个粒子的状态,并更新其权重。

  3. 更新阶段:根据观测数据,更新每个粒子的权重。

  4. 重采样阶段:根据权重对粒子进行重采样,以避免粒子退化问题。

  5. 重复步骤 2-4,直到达到预设的迭代次数。

3. 正向向后平滑 (FBS) 去噪

3.1 理论基础

正向向后平滑 (FBS) 是一种基于卡尔曼滤波的平滑方法,其基本思想是在正向滤波的基础上,利用后向平滑来对信号状态进行更准确的估计。

3.2 实现步骤

FBS 去噪的实现步骤如下:

  1. 正向滤波:利用卡尔曼滤波器对信号进行正向滤波,得到滤波状态估计。

  2. 后向平滑:利用后向平滑算法对滤波状态估计进行修正,得到平滑状态估计。

4. 最大后验平滑 (MAP) 去噪

4.1 理论基础

最大后验平滑 (MAP) 是一种基于贝叶斯理论的平滑方法,其基本思想是利用观测数据和先验知识来估计信号的最优状态。

4.2 实现步骤

MAP 去噪的实现步骤如下:

  1. 定义先验概率分布:根据信号的先验知识,定义信号状态的先验概率分布。

  2. 定义似然函数:根据观测模型,定义观测数据的似然函数。

  3. 计算后验概率分布:利用贝叶斯公式计算信号状态的后验概率分布。

  4. 寻找最大后验概率:在后验概率分布中寻找最大概率值对应的信号状态,作为估计结果。

4.3 代码示例

 

% 绘制结果
figure;
subplot(2,1,1);
plot(x, 'b', 'LineWidth', 2);
hold on;
plot(y, 'r', 'LineWidth', 2);
legend('原始信号', '含噪信号');
title('原始信号与含噪信号');

subplot(2,1,2);
plot(x, 'b', 'LineWidth', 2);
hold on;
plot(x_map, 'g', 'LineWidth', 2);
legend('原始信号', 'MAP 估计信号');
title('原始信号与 MAP 估计信号');

5. 结论

本文介绍了三种常用的信号去噪方法:粒子滤波器、正向向后平滑和最大后验平滑,并提供了相应的 Matlab 代码示例。这三种方法各有优缺点,适用场景也不尽相同。在实际应用中,需要根据信号的特性和噪声类型选择合适的去噪方法。

⛳️ 运行结果

🔗 参考文献

[1]李响.基于粒子滤波的单通道盲分离算法研究[D].郑州大学,2012.DOI:10.7666/d.y2102797.

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值