✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗 :Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
摘要: 本文探讨了基于指数遗忘的递归最小二乘方法用于时变参数系统的参数辨识问题。首先介绍了时变参数系统的模型和参数辨识问题,以及递归最小二乘算法的基本原理。随后详细分析了指数遗忘因子对算法的影响,阐述了其在跟踪时变参数时的作用和选择方法。最后,通过MATLAB代码实现了一个简单的时变参数系统辨识实例,并分析了仿真结果,验证了算法的有效性。
关键词: 时变参数系统, 递归最小二乘, 指数遗忘, 参数辨识, MATLAB
1. 引言
在实际工程应用中,许多系统参数会随着时间变化,例如机器磨损、环境温度变化等因素都会影响系统的动态特性。对于这类时变参数系统,传统的参数辨识方法往往难以准确估计参数的动态变化,因此需要更灵活的算法来适应参数的时变特性。递归最小二乘(RLS)算法作为一种在线参数辨识方法,具有计算量小、实时性强等优点,已被广泛应用于各种系统参数辨识问题。然而,标准RLS算法适用于参数恒定或缓慢变化的系统,对于参数快速变化的系统,其跟踪性能会受到很大限制。
为了解决这一问题,人们引入了指数遗忘因子,将其融入RLS算法,形成了基于指数遗忘的递归最小二乘(ERLS)算法。该算法通过对历史数据赋予不同的权重,有效地提高了算法对参数变化的跟踪能力,使其更适合于时变参数系统的参数辨识。
2. 时变参数系统模型及参数辨识问题
2.1 时变参数系统模型
时变参数系统可以描述为以下线性模型:
2.2 参数辨识问题
3. 递归最小二乘算法
3.1 标准RLS算法
3.2 指数遗忘因子
标准RLS算法在估计时变参数时,会受到历史数据的过度影响,导致跟踪性能下降。指数遗忘因子可以有效解决这一问题,它为历史数据赋予不同的权重,越接近当前时刻的数据权重越大,从而提高对参数变化的敏感度。
4. ERLS算法实现
4.1 ERLS算法流程
ERLS算法的具体流程如下:
4.2 指数遗忘因子选择
指数遗忘因子 𝜆λ 的选择对算法性能有重要影响。一般来说,𝜆λ 越接近 1,算法对历史数据的权重越高,跟踪性能越弱,但抗噪声能力越强。𝜆λ 越接近 0,算法对历史数据的权重越低,跟踪性能越强,但更容易受到噪声影响。
实际应用中,需要根据具体的系统特性和噪声水平选择合适的 𝜆λ 值。通常可以使用试凑法或自适应方法来确定 𝜆λ 的最优值。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类