【参数辨识】基于指数遗忘的递归最小二乘实现时变参数的系统参数辨识附matlab代码

✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗 :Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

摘要: 本文探讨了基于指数遗忘的递归最小二乘方法用于时变参数系统的参数辨识问题。首先介绍了时变参数系统的模型和参数辨识问题,以及递归最小二乘算法的基本原理。随后详细分析了指数遗忘因子对算法的影响,阐述了其在跟踪时变参数时的作用和选择方法。最后,通过MATLAB代码实现了一个简单的时变参数系统辨识实例,并分析了仿真结果,验证了算法的有效性。

关键词: 时变参数系统, 递归最小二乘, 指数遗忘, 参数辨识, MATLAB

1. 引言

在实际工程应用中,许多系统参数会随着时间变化,例如机器磨损、环境温度变化等因素都会影响系统的动态特性。对于这类时变参数系统,传统的参数辨识方法往往难以准确估计参数的动态变化,因此需要更灵活的算法来适应参数的时变特性。递归最小二乘(RLS)算法作为一种在线参数辨识方法,具有计算量小、实时性强等优点,已被广泛应用于各种系统参数辨识问题。然而,标准RLS算法适用于参数恒定或缓慢变化的系统,对于参数快速变化的系统,其跟踪性能会受到很大限制。

为了解决这一问题,人们引入了指数遗忘因子,将其融入RLS算法,形成了基于指数遗忘的递归最小二乘(ERLS)算法。该算法通过对历史数据赋予不同的权重,有效地提高了算法对参数变化的跟踪能力,使其更适合于时变参数系统的参数辨识。

2. 时变参数系统模型及参数辨识问题

2.1 时变参数系统模型

时变参数系统可以描述为以下线性模型:

2.2 参数辨识问题

3. 递归最小二乘算法

3.1 标准RLS算法

3.2 指数遗忘因子

标准RLS算法在估计时变参数时,会受到历史数据的过度影响,导致跟踪性能下降。指数遗忘因子可以有效解决这一问题,它为历史数据赋予不同的权重,越接近当前时刻的数据权重越大,从而提高对参数变化的敏感度。

4. ERLS算法实现

4.1 ERLS算法流程

ERLS算法的具体流程如下:

4.2 指数遗忘因子选择

指数遗忘因子 𝜆λ 的选择对算法性能有重要影响。一般来说,𝜆λ 越接近 1,算法对历史数据的权重越高,跟踪性能越弱,但抗噪声能力越强。𝜆λ 越接近 0,算法对历史数据的权重越低,跟踪性能越强,但更容易受到噪声影响。

实际应用中,需要根据具体的系统特性和噪声水平选择合适的 𝜆λ 值。通常可以使用试凑法或自适应方法来确定 𝜆λ 的最优值。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值