✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗 :Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
高铁运营公司面临着复杂的列车开行方案制定问题,需要考虑旅客需求、运营成本、列车运行效率等多重因素。本文基于整数规划模型,利用 MATLAB 中的 intlinprog 函数,对高铁运营公司列车开行方案进行优化,以实现目标利润最大化。
1. 问题描述
高铁运营公司需要制定合理的列车开行方案,以满足旅客需求,提高运营效率,并最大化利润。问题可以抽象为以下几个关键要素:
-
旅客需求: 不同时间段、不同线路的旅客需求量。
-
列车资源: 高铁运营公司拥有的列车数量、车型、速度等信息。
-
运营成本: 列车开行成本,包括人员成本、燃料成本、维修成本等。
-
收益: 车票收入。
-
约束条件:
-
列车运行时刻表需要满足一定的间隔时间。
-
列车运行时间需要满足安全要求。
-
列车停靠站台需要满足乘客上下车需求。
-
列车资源需要满足分配需求。
-
具体内容见上表。
本文在优化列车开行方案时综合的考虑了高铁运营企业的运营效益。在确定性假设的条件下,不同停站方案的列车,其开行成本是不同的,所以高铁运营企业的总收益也是不同的。因此目标函数为不同开行方案的列车开行成本最小。
其中:
式(1)为目标函数,表示该线路所有不同的开行方案列车的开行成本;
式(2)为始发站中川机场站的发车能力约束;表示所有不同的开行方案列车数量总和不能超过中川机场站的发车能力;
式(3)为各时段的服务能力约束,表示发车时段内中川机场站的列车服务能力要大于等于客流在该时段的分配量;
式(4)为沿途各到达站的服务能力约束,即列车分配给沿途各到达站的能力要大于客流分配量;
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类