✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真定制内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知,科研水水,期刊狂魔。
🔥 内容介绍
四旋翼无人机作为一种典型的欠驱动非线性系统,在控制方面存在着巨大的挑战,尤其是当需要执行高机动性动作时。本项目旨在深入研究非线性几何控制方法在四旋翼无人机控制中的应用。几何控制理论侧重于研究状态空间的几何特征如何影响控制问题。在控制系统工程中,动态系统的底层几何特征往往被忽略。微分几何控制技术利用这些几何特性来设计和分析控制系统。
研究目标和方法
该项目的具体目标是:
-
利用微分几何方法对四旋翼无人机系统进行建模和控制,将系统动力学和控制输入表达在非线性流形上,而非局部的坐标系。
-
基于系统动力学的几何特性,设计一个能够实现全局稳定性的控制器,即系统能够从任何初始状态恢复。
为了实现上述目标,我们将采用以下方法:
-
利用微分几何原理分析四旋翼无人机系统的配置,将其描述在光滑的非线性几何配置空间上。这将避免在局部坐标系上可能出现的奇异性问题。
-
利用相同的几何特性,在配置空间上定义误差函数,进而构建一个几乎全局定义的非线性几何控制器。
-
通过仿真验证非线性几何控制器的稳定性和控制能力。
研究意义
传统的四旋翼无人机控制方法往往依赖于线性化模型或局部坐标系,这会导致控制精度有限,且容易受到系统非线性特性的影响。非线性几何控制方法能够克服这些局限性,提供更精确、更鲁棒的控制性能。此外,全局稳定性是无人机控制系统的重要要求,而非线性几何控制方法能够有效地实现这一目标,为四旋翼无人机的安全性和可靠性提供保障。
研究内容概述
本研究将从以下几个方面展开:
-
四旋翼无人机系统建模: 利用拉格朗日方程和微分几何工具,建立四旋翼无人机系统的动力学模型。
-
几何控制器的设计: 基于系统的几何特性,设计一个非线性几何控制器,并分析其稳定性。
-
仿真验证: 利用MATLAB等工具对控制器进行仿真,验证其稳定性和控制性能。
预期成果
本研究将实现以下成果:
-
建立基于微分几何的四旋翼无人机系统模型。
-
设计一个具有全局稳定性的非线性几何控制器。
-
仿真验证控制器的有效性和鲁棒性。
结论
非线性几何控制方法为四旋翼无人机的控制提供了一种全新的思路,能够有效解决传统方法所面临的挑战。本研究将深入探讨该方法的应用,为四旋翼无人机的控制技术发展贡献力量。
未来研究方向
未来,我们将继续研究以下方面:
-
进一步探索非线性几何控制方法在更复杂环境下的应用,例如存在风扰动或未知障碍物。
-
研究基于学习的几何控制方法,进一步提高控制器的性能和适应性。
-
将非线性几何控制方法应用于其他类型的无人机系统,例如多旋翼无人机和固定翼无人机。
⛳️ 运行结果
🔗 参考文献
Geometric tracking control of a quadrotor UAV on SE(3) | IEEE Conference Publication | IEEE Xplore
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类