【车间调度】基于NSGA2柔性作业车间调度问题FJSP附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

柔性作业车间调度问题(Flexible Job Shop Scheduling Problem, FJSP)作为传统作业车间调度问题(Job Shop Scheduling Problem, JSP)的拓展与复杂化,在现代制造业中占据着重要的地位。它不仅保留了JSP中工件需按照特定工艺路线加工的约束,更引入了柔性约束,允许同一道工序可以在多台不同的机器上进行加工,从而提高了生产系统的灵活性与效率。然而,FJSP的复杂性也使得寻找最优调度方案变得极具挑战性,尤其是在大型车间环境中。本文将着重探讨基于非支配排序遗传算法II(Non-dominated Sorting Genetic Algorithm II, NSGA-II)解决FJSP的方法,并分析其优势与局限性。

首先,我们需要明确FJSP的基本定义与优化目标。在FJSP中,我们拥有若干个需要加工的工件(Job),每个工件包含若干道工序(Operation),每道工序可以在若干台机器上进行加工。每台机器在任意时刻只能加工一个工序,且每个工件的工序之间存在着严格的先后顺序。与传统JSP不同,FJSP允许同一工序在多台机器上进行加工,从而引入了机器选择的决策。因此,FJSP的目标是同时优化多个冲突的目标,例如最小化最大完工时间(Makespan)、最小化总延迟时间(Total Tardiness)、最小化总机器负荷(Total Machine Load)等。这些目标往往难以同时达到最优,因此需要采用多目标优化算法进行求解,而NSGA-II正是其中一种常用的有效方法。

NSGA-II是一种基于Pareto支配的遗传算法,它通过模拟生物进化过程,逐步逼近Pareto最优解集。其核心机制包括非支配排序、拥挤距离计算和精英保留策略。

非支配排序: 这是NSGA-II的核心环节,它将种群中的个体按照其支配关系进行排序。如果一个个体不受种群中其他任何个体支配,则该个体被认为是第一层Pareto前沿,赋予最低的排序等级。然后,将第一层Pareto前沿的个体从种群中移除,在剩余个体中继续寻找不受支配的个体,赋予第二层排序等级,依此类推,直到所有个体都被赋予了排序等级。这种排序方式能够保证较好的个体(即不受其他个体支配的个体)具有更高的繁殖机会。

拥挤距离计算: 为了维持种群的多样性,避免算法过早收敛到局部最优解,NSGA-II引入了拥挤距离的概念。拥挤距离表示在解空间中,一个个体周围个体的密度。对于同一Pareto前沿上的个体,拥挤距离越大,说明该个体周围的个体越稀疏,因此该个体被选中的概率越高。拥挤距离的计算方法通常是对解集在各个目标维度上进行排序,然后计算每个个体与其相邻个体目标值的差值的总和。

精英保留策略: 为了防止在进化过程中丢失优良个体,NSGA-II采用了精英保留策略。在每一代进化过程中,NSGA-II将当前种群与上一代种群合并,然后从中选出具有更高排序等级和更大拥挤距离的个体,组成新的种群。这种策略能够保证在进化过程中,优秀的个体能够被保留下来,并参与到下一代的繁殖中,从而加速算法的收敛速度。

将NSGA-II应用于解决FJSP,需要对染色体编码、交叉和变异操作进行精心设计。染色体编码方式的选择直接影响着算法的性能。一种常用的编码方式是采用两段式编码,第一段表示工序的加工顺序,第二段表示每道工序所选择的机器。

染色体编码: 假设有三个工件,工件1包含两个工序,工件2包含三个工序,工件3包含两个工序。则染色体的第一段可以表示为[1, 2, 1, 3, 2, 3, 2],其中1代表工件1,2代表工件2,3代表工件3。该序列表示工序的加工顺序为:工件1的第一道工序,工件2的第一道工序,工件1的第二道工序,工件3的第一道工序,工件2的第二道工序,工件3的第二道工序,工件2的第三道工序。染色体的第二段可以表示为[2, 1, 3, 1, 2, 2, 1],其中每个数字代表该工序所选择的机器编号。例如,数字2表示该工序在机器2上进行加工。

交叉操作: 交叉操作旨在通过交换两个父代染色体的部分信息,产生新的后代。常用的交叉操作包括单点交叉、两点交叉、均匀交叉等。在FJSP中,需要根据染色体编码的特点,选择合适的交叉操作。例如,可以分别对工序序列和机器选择序列进行交叉,以保证后代的有效性。

变异操作: 变异操作旨在通过随机改变染色体中的某些基因,引入新的基因信息,从而增加种群的多样性。常用的变异操作包括交换变异、插入变异、反转变异等。在FJSP中,可以采用交换工序序列中的两个工序位置,或者改变机器选择序列中的一个机器编号等方式进行变异。

算法流程:

  1. 初始化种群: 随机生成初始种群,每个个体代表一个可行的调度方案。

  2. 非支配排序: 对种群中的个体进行非支配排序,计算每个个体的排序等级。

  3. 拥挤距离计算: 对同一Pareto前沿上的个体,计算其拥挤距离。

  4. 选择操作: 根据排序等级和拥挤距离,采用轮盘赌选择或锦标赛选择等方式,选择个体进行繁殖。

  5. 交叉操作: 对选择出的个体进行交叉操作,产生新的后代。

  6. 变异操作: 对新产生的后代进行变异操作,引入新的基因信息。

  7. 合并种群: 将当前种群与上一代种群合并。

  8. 精英保留: 从合并后的种群中,根据排序等级和拥挤距离,选出优秀个体,组成新的种群。

  9. 终止条件判断: 判断是否满足终止条件,例如达到最大迭代次数或找到满足要求的解。如果满足,则输出Pareto最优解集;否则,返回步骤2,继续进行进化。

尽管NSGA-II在解决FJSP方面表现出了强大的能力,但也存在一些局限性。

参数敏感性: NSGA-II的性能受到参数设置的影响,例如种群大小、交叉概率、变异概率等。不同的参数设置可能导致算法的收敛速度和求解质量产生显著差异。因此,需要进行大量的实验才能找到合适的参数组合。

计算复杂度: 对于大型FJSP,NSGA-II的计算复杂度较高,需要消耗大量的计算资源。尤其是在非支配排序和拥挤距离计算环节,需要对所有个体进行比较,因此时间复杂度较高。

局部最优解: NSGA-II作为一种启发式算法,仍然存在陷入局部最优解的风险。尤其是在解空间复杂的情况下,算法可能无法找到真正的Pareto最优解集。

综上所述,基于NSGA-II的柔性作业车间调度问题研究具有重要的理论意义和实践价值。NSGA-II能够有效地解决FJSP的多目标优化问题,并找到一组Pareto最优解集。然而,NSGA-II也存在一些局限性,需要通过改进算法和引入问题特定知识来克服。随着制造业的不断发展,FJSP的研究将更加深入,基于NSGA-II的改进算法也将在实际生产中发挥更大的作用,助力企业实现高效、灵活的生产调度。未来,结合深度学习等新兴技术,进一步提高FJSP求解效率和智能性,将是重要的发展方向。

📣 部分代码

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    % Sort according to Crowding Distance    CD=[pop.CrowdingDistance];    [CD CDSO]=sort(CD,'descend');    pop=pop(CDSO);        % Sort according to Rank    R=[pop.Rank];    [R RSO]=sort(R,'ascend');    pop=pop(RSO);end

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🌿 往期回顾可以关注主页,点击搜索

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值