✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
摘要:电动汽车(EV)的普及给电力系统带来了新的机遇和挑战。充电站作为电动汽车与电网之间的关键接口,其运营策略对电网的稳定性和经济性至关重要。本文研究了考虑电动汽车可调度潜力的充电站两阶段市场投标策略。首先,分析了电动汽车充电负荷的可调度性,并建立了相应的数学模型。其次,针对两阶段市场(包括日前市场和实时市场),提出了充电站的投标策略,旨在最大化充电站的利润,同时为电网提供灵活性服务。最后,探讨了投标策略的实际应用和未来发展方向。
引言
全球气候变化和能源安全问题日益严峻,促使各国政府大力推广电动汽车的使用。电动汽车具有零排放、低噪声等优点,被视为实现交通运输领域可持续发展的关键技术。随着电动汽车保有量的快速增长,对充电基础设施的需求也日益增加。充电站作为电动汽车与电网之间的关键接口,其运营模式和能源管理策略对电网的稳定性和经济性具有重要影响。
传统的充电站通常采用被动充电模式,即电动汽车到达充电站后立即开始充电,直至充满为止。这种充电模式容易导致电网负荷峰谷差增大,甚至引发局部电网拥塞。然而,电动汽车的充电负荷具有一定的可调度性,例如可以通过调整充电时间、充电功率等方式,将充电负荷转移到电网负荷低谷时段,从而提高电网的利用率和稳定性。
为了充分利用电动汽车的可调度潜力,许多研究提出了基于市场机制的充电站运营策略。其中,两阶段市场模式由于能够反映电网负荷的动态变化,并提供日前和实时的电力交易机会,受到了广泛关注。本文旨在研究一种考虑电动汽车可调度潜力的充电站两阶段市场投标策略,旨在最大化充电站的利润,同时为电网提供灵活性服务。
电动汽车充电负荷的可调度性分析
电动汽车充电负荷的可调度性来源于以下几个方面:
- 充电时间的可移动性:
电动汽车通常在到达充电站后并非立即需要满电,而是存在一个时间窗口,允许充电站根据电网的需要对充电时间进行调整。例如,上班族通常在工作期间将电动汽车停放在停车场充电,而其对充电完成时间的要求通常相对宽松,允许充电站根据电网需求进行优化。
- 充电功率的可调节性:
许多电动汽车和充电桩都支持可调功率充电,充电站可以通过调整充电功率来改变充电速率,从而在一定范围内控制充电负荷的大小。
- 双向充电/放电能力(V2G):
随着V2G技术的不断成熟,部分电动汽车已经具备双向充电/放电能力,可以将车辆存储的电能反馈给电网,从而为电网提供额外的灵活性支持。
为了量化电动汽车充电负荷的可调度性,可以建立如下数学模型:
- 充电需求:
假设充电站有N辆电动汽车需要充电,每辆电动汽车的充电需求为𝐷𝑖Di,单位为kWh。
基于以上参数,可以将电动汽车的充电调度问题建模为一个优化问题,目标是在满足电动汽车充电需求的同时,优化充电负荷曲线,以达到降低充电成本或提供灵活性服务的目的。
两阶段市场投标策略
两阶段市场通常包括日前市场和实时市场。日前市场在提前一天进行电力交易,允许参与者提前规划自己的电力供应和需求。实时市场则在实际运行前进行电力平衡,以应对 unforeseen 事件和预测误差。
针对两阶段市场,充电站的投标策略可以分为以下两个阶段:
-
日前市场投标:
在日前市场,充电站需要根据历史数据、天气预报、电价预测等信息,预测第二天的电动汽车充电需求。然后,根据预测结果和电网的信号(例如,尖峰时刻电价高),制定日前市场的投标策略。
-
投标策略目标: 最大化日前市场的利润。
-
投标策略变量: 充电站需要向电力市场提交的电力购买量和电力售卖量(如果支持V2G)。
-
投标策略约束: 充电站的投标量需要满足自身的充电需求,并考虑电网的稳定性约束。例如,充电站可以承诺在电网负荷高峰时段降低充电负荷,并获得相应的补偿。
-
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇