基于注意力的多步超短期农业电力负荷预测分解策略和注意力长短期记忆网络预测研究附Python代码

作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍


 精准的农业电力负荷预测对于优化农业用电管理、提高能源利用效率、保障农业生产安全至关重要。超短期负荷预测(Ultra-Short-Term Load Forecasting, USTLF)作为短期负荷预测的重要组成部分,在农业电力系统实时调度和控制中扮演着关键角色。然而,农业电力负荷具有明显的非线性、非平稳性以及受多种因素影响的特点,使得超短期负荷预测面临诸多挑战。本文深入研究基于注意力的多步超短期农业电力负荷预测方法,提出了一种基于分解策略和注意力长短期记忆网络(Attention-LSTM)的预测模型。该模型首先利用分解策略将复杂的农业电力负荷时间序列分解为多个相对平稳的子序列,然后利用Attention-LSTM网络学习不同子序列的时序依赖关系,并赋予不同时间步长不同的权重,最终实现精准的多步超短期负荷预测。本文详细阐述了模型的设计思路、算法实现以及实验验证,旨在为提高农业电力负荷预测的准确性和稳定性提供新的技术方案。

关键词: 农业电力负荷预测;超短期负荷预测;分解策略;注意力机制;长短期记忆网络

1. 引言

随着现代农业的快速发展,电力在农业生产中的应用日益广泛,包括灌溉、温室控制、畜牧养殖等各个环节都对电力供应提出了更高的要求。精准的农业电力负荷预测不仅能够帮助电力部门合理安排电力资源,降低供电成本,还能有效避免因电力供应不足而导致的农业生产损失,提高农业生产的效率和效益。

超短期负荷预测(USTLF)通常指预测未来数分钟至数小时内的电力负荷需求,在农业电力系统实时调度、平衡供需、智能配电等方面具有重要的应用价值。例如,针对光伏发电等新能源发电接入农业电力系统的情况,超短期负荷预测能够为新能源电力的消纳提供更加准确的预测依据,避免因新能源发电的波动性而影响电网的稳定运行。

然而,农业电力负荷预测面临着独特的挑战。首先,农业生产活动具有明显的季节性和周期性,受种植类型、生长阶段、天气条件等多种因素的影响,导致农业电力负荷呈现出复杂的非线性、非平稳特性。其次,农业用电负荷往往具有较强的随机性,受到突发事件(如极端天气、设备故障等)的影响,使得预测难度增大。此外,农业生产活动的时间分辨率较高,需要进行更精确的超短期负荷预测,这对预测模型的精度和实时性提出了更高的要求。

针对以上挑战,国内外学者提出了多种负荷预测方法,包括统计模型、机器学习模型和深度学习模型等。传统的统计模型,如ARIMA模型、指数平滑模型等,虽然计算简单,但在处理非线性、非平稳的时间序列时表现不佳。机器学习模型,如支持向量机(SVM)、随机森林(RF)等,能够有效处理非线性关系,但在处理长时序依赖关系时存在局限性。近年来,深度学习模型,特别是循环神经网络(RNN)及其变体,如长短期记忆网络(LSTM)和门控循环单元(GRU),凭借其强大的时序建模能力,在电力负荷预测领域取得了显著的成果。

尽管LSTM等深度学习模型在一定程度上解决了传统模型的局限性,但在超短期负荷预测中仍然面临着挑战。一方面,原始的负荷数据往往包含大量噪声和复杂的变化模式,直接输入到LSTM网络中容易导致模型训练困难,泛化能力不足。另一方面,LSTM网络在处理长时序依赖关系时,可能会因为梯度消失或梯度爆炸等问题而影响预测精度。

为了解决上述问题,本文提出了一种基于注意力的多步超短期农业电力负荷预测分解策略和注意力长短期记忆网络预测研究。该研究旨在通过以下几个方面提升农业电力负荷预测的精度和鲁棒性:

  • 引入分解策略:

     将复杂的农业电力负荷时间序列分解为多个相对平稳的子序列,从而降低模型的学习难度,提高预测精度。

  • 采用注意力机制:

     利用注意力机制动态地赋予不同时间步长不同的权重,从而更好地捕捉重要的时序信息,提高模型的预测能力。

  • 构建Attention-LSTM网络:

     将注意力机制与LSTM网络相结合,构建Attention-LSTM预测模型,充分利用LSTM网络的时序建模能力和注意力机制的特征提取能力。

  • 实现多步超短期预测:

     设计多步预测策略,能够同时预测未来多个时间点的负荷需求,满足实际应用的需求。

2. 相关研究

近年来,国内外学者在电力负荷预测领域进行了大量的研究,并取得了丰硕的成果。本节将简要回顾与本文研究相关的关键技术和方法。

2.1 分解策略

分解策略旨在将复杂的原始时间序列分解为多个相对平稳的子序列,从而降低模型的学习难度,提高预测精度。常用的分解方法包括:

  • 经验模态分解(Empirical Mode Decomposition, EMD):

     是一种自适应的时频分析方法,能够将非线性、非平稳的时间序列分解为一系列固有模态函数(Intrinsic Mode Functions, IMF)和一个残差项。

  • 变分模态分解(Variational Mode Decomposition, VMD):

     是一种非递归的自适应信号分解方法,能够将时间序列分解为多个具有特定频率的模态函数。

  • 小波变换(Wavelet Transform):

     是一种多分辨率分析方法,能够将时间序列分解为不同尺度的细节和近似分量。

不同的分解策略适用于不同的时间序列特点。选择合适的分解策略是提高预测精度的关键。

2.2 注意力机制

注意力机制(Attention Mechanism)是一种模仿人类视觉注意力机制的神经网络结构,能够让模型自动地关注输入序列中重要的部分,从而提高模型的学习能力。在电力负荷预测中,注意力机制可以帮助模型识别影响负荷的关键时间点和特征,提高预测精度。

常用的注意力机制包括:

  • 自注意力机制(Self-Attention Mechanism):

     能够学习输入序列内部的依赖关系,捕捉不同时间步长之间的关联。

  • 软注意力机制(Soft Attention Mechanism):

     对输入序列中的所有时间步长进行加权平均,权重值介于0和1之间。

  • 硬注意力机制(Hard Attention Mechanism):

     从输入序列中选择一个或多个时间步长,权重值为0或1。

2.3 LSTM网络

长短期记忆网络(Long Short-Term Memory, LSTM)是一种特殊的循环神经网络(RNN),能够有效解决传统RNN在处理长时序依赖关系时存在的梯度消失或梯度爆炸问题。LSTM网络通过引入细胞状态(Cell State)和门控机制(Gate Mechanism)来记忆和更新信息,从而更好地捕捉时间序列的长期依赖关系。

3. 基于分解策略和Attention-LSTM的农业电力负荷预测模型

本文提出了一种基于分解策略和Attention-LSTM的农业电力负荷预测模型,该模型主要包括以下几个步骤:

3.1 数据预处理

数据预处理是提高预测精度的重要步骤。主要包括以下几个方面:

  • 数据清洗:

     剔除缺失值、异常值和重复值,保证数据的质量。

  • 数据归一化:

     将原始数据归一化到[0, 1]区间,避免因数据量纲不同而影响模型的训练。

  • 特征工程:

     提取与农业电力负荷相关的特征,如历史负荷数据、天气数据、日期时间信息等。

3.2 序列分解

采用合适的分解策略将预处理后的农业电力负荷时间序列分解为多个相对平稳的子序列。具体而言,可以选择EMD、VMD或小波变换等方法。选择哪种分解方法取决于数据的特点和实际的应用需求。例如,EMD和VMD适用于分解非线性、非平稳的时间序列,而小波变换适用于提取不同频率的特征。

3.3 Attention-LSTM网络构建

针对每个分解得到的子序列,构建Attention-LSTM网络进行预测。Attention-LSTM网络由LSTM层和注意力层组成。

  • LSTM层:

     用于学习子序列的时序依赖关系,提取时间特征。

  • 注意力层:

     用于动态地赋予不同时间步长不同的权重,从而更好地捕捉重要的时序信息。

注意力层的计算过程如下:

  1. 计算注意力权重:

     将LSTM层的输出作为输入,通过一个全连接层计算每个时间步长的注意力权重。

  2. 归一化注意力权重:

     使用softmax函数将注意力权重归一化到[0, 1]区间。

  3. 加权平均:

     将LSTM层的输出与对应的注意力权重相乘,得到加权后的输出。

3.4 多步预测策略

为了实现多步超短期负荷预测,可以采用以下两种策略:

  • 递归预测:

     使用单步预测模型迭代预测未来的多个时间步长。每次预测都将上一次的预测结果作为输入,进行下一次预测。

  • 直接预测:

     使用多步预测模型直接预测未来的多个时间步长。模型一次性输出未来多个时间点的预测值。

递归预测的优点是模型结构简单,但误差会随着预测步数的增加而累积。直接预测的优点是能够减少误差累积,但模型结构相对复杂。

3.5 模型训练与评估

使用历史数据训练Attention-LSTM网络,并使用独立的测试集评估模型的预测性能。常用的评估指标包括:

  • 平均绝对误差(Mean Absolute Error, MAE)
  • 均方根误差(Root Mean Squared Error, RMSE)
  • 平均绝对百分比误差(Mean Absolute Percentage Error, MAPE)

4. 结论与展望

本文针对农业电力负荷超短期预测问题,提出了一种基于分解策略和Attention-LSTM的预测模型。该模型首先利用分解策略将复杂的农业电力负荷时间序列分解为多个相对平稳的子序列,然后利用Attention-LSTM网络学习不同子序列的时序依赖关系,并赋予不同时间步长不同的权重,最终实现精准的多步超短期负荷预测。实验结果表明,本文提出的模型能够显著提高农业电力负荷预测的准确性和稳定性,具有重要的应用价值。

未来的研究方向包括:

  • 探索更有效的分解策略:

     研究不同的分解策略对预测精度的影响,选择更适合农业电力负荷特点的分解方法。

  • 优化Attention-LSTM网络结构:

     研究不同的注意力机制和LSTM网络结构对预测性能的影响,探索更有效的网络结构。

  • 考虑更多影响因素:

     将更多与农业电力负荷相关的因素纳入模型,如气候变化、农业政策等,进一步提高预测精度。

  • 研究在线学习方法:

     开发在线学习方法,能够根据实时数据动态更新模型参数,提高模型的适应性和鲁棒性。

  • 将模型应用于实际场景:

     将本文提出的模型应用于实际农业电力系统,验证其在实际应用中的效果,并根据实际需求进行优化。

⛳️ 运行结果

图片

图片

图片

图片

图片

🔗 参考文献

[1] 王昊.基于改进BI-LSTM与CEEMDAN组合模型的短期电力负荷预测研究[D].兰州理工大学,2023.

[2] 刘伟,王洪志.基于改进注意力机制的时间卷积网络-长短期记忆网络短期电力负荷预测[J].电气技术, 2024, 25(10):8-14.

[3] 曹少奇.基于注意力机制融合LSTM的短期电力负荷预测算法研究[D].华北电力大学(北京),2022.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值