✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
摘要: 多智能体系统的一致性问题是分布式协同控制领域的核心研究方向之一。其目标在于设计合适的控制律,使得网络中所有智能体的状态能够随着时间收敛到共同的数值或轨迹。传统的线性一致性协议在面对复杂系统或未知动力学时存在局限性。自适应动态规划(ADP)作为一种有效的在线学习与优化控制方法,为解决具有未知动力学或性能指标的控制问题提供了新的思路。本文聚焦于无向图拓扑下的多智能体系统,探讨如何基于ADP实现智能体间的一致性。通过将一致性问题转化为最优控制问题,利用ADP的在线学习能力,设计分布式控制器。本文将详细阐述基于MATLAB的实现过程,包括系统建模、ADP算法设计、控制器实现以及仿真验证,以展示该方法在无向图网络中实现多智能体一致性的有效性。
关键词: 多智能体系统;一致性;自适应动态规划(ADP);无向图;MATLAB;分布式控制
1. 引言
多智能体系统(Multi-Agent Systems, MAS)在机器人协作、无人机编队、智能电网、传感器网络等众多领域展现出巨大的应用潜力。在这些应用中,实现智能体之间的协同行为往往是首要任务,而多智能体一致性(Consensus)正是实现协同行为的基础之一。一致性问题的核心在于如何通过智能体之间的局部交互,使得所有智能体的某些状态(如位置、速度、角度等)最终达成一致。
传统的多智能体一致性协议,如基于线性反馈的协议,已经在理论上得到了广泛研究,并证明了其在满足特定条件下的一致性收敛性。然而,这些协议通常需要知道智能体的精确动力学模型或全局信息。在实际应用中,智能体动力学往往是未知的或时变的,且全局信息获取困难,这限制了传统方法的适用范围。
自适应动态规划(Adaptive Dynamic Programming, ADP),也称为强化学习或神经动态规划,是一种基于Bellman方程的最优控制方法。与传统的动态规划需要全局知识和离线计算不同,ADP通过函数逼近器(如神经网络)在线学习价值函数或控制策略,从而实现对未知动力学系统的最优控制。ADP的核心思想是通过智能体与环境的交互,不断更新价值函数或策略,以最小化或最大化某个性能指标。
将ADP应用于多智能体一致性问题,为解决具有未知动力学或需要优化性能的一致性问题提供了新的途径。通过将一致性误差或系统性能指标定义为ADP的优化目标,智能体可以自主学习最优的控制策略,从而在不依赖全局信息或精确模型的情况下实现一致性。
本文旨在研究基于ADP的多智能体一致性问题,特别针对智能体间通信拓扑为无向图的情况。无向图表示智能体之间的通信是双向的,这简化了图论分析,但也需要确保设计的分布式控制器能够充分利用无向图的对称性。本文将详细介绍如何构建ADP算法来实现多智能体一致性,并通过MATLAB进行仿真验证。
⛳️ 运行结果
🔗 参考文献
[1] 潘欢.二阶多智能体一致性算法研究[D].中南大学[2025-04-24].DOI:10.7666/d.y2198625.
[2] 张柯夏静萍.多智能体系统故障诊断仿真实验开发[J].实验技术与管理, 2017, 034(011):114-117.
[3] 陈颖.基于自适应方法的复杂网络同步及多智能体一致性研究[D].江苏大学,2011.DOI:10.7666/d.y2026982.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇