股票价格预测 | Python实现Autoformer, FEDformer和PatchTST等模型用于股价预测

本文探讨了Autoformer、FEDformer和PatchTST等Transformer模型在时间序列预测,尤其是股价预测中的应用。这些模型针对时间序列数据的特性进行了优化,如Autoformer的自动建模和自适应特征选择,FEDformer的特征增强和去噪,以及PatchTST的局部和全局依赖捕捉。通过neuralforecast库,展示了如何实现和比较这些模型的预测性能,FEDformer和PatchTST在多个评估指标上表现出色。
摘要由CSDN通过智能技术生成


效果一览

在这里插入图片描述

文章概述

Autoformer、FEDformer和PatchTST是一些用于时间序列预测,包括股价预测的模型。它们都是在Transformer模型的基础上进行了改进和扩展,以更好地适应时间序列数据的特点。
Autoformer:Autoformer是一种自适应Transformer模型,它引入了自动建模机制和自适应特征选择来处理时间序列数据。Autoformer通过引入自动建模模块,可以自动学习时间序列的长期和短期依赖关系,并且通过自适应特征选择,可以动态地选择和调整输入特征的重要性。这使得Autoformer在处理多变量时间序列数据,如股价预测中,具有较好的性能。
FEDformer:FEDformer(Feature Enhanced Denoising Transformer)是一种融合了特征增强和去噪的Transformer模型。FEDformer通过引入特征增强模块,可以对原始输入特征进行编码和增强,以提取更有用的特征表示。同时,FEDformer还通过引入去噪自编码器来降低输入数据的噪声和干扰。这些改进使得FEDformer在时间序列预测任务中能够更好地捕捉特征和减少干扰,提高预测的准确性。
PatchTST:PatchTST是一种基于Transformer的时间序列模型,它将时间序列数据划分为不同的块(patches),并使用Transformer模型对每个块进行建模。通过将时间序列划分为块,

  • 19
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

算法如诗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值