金属材料在制造过程中难以完全消除组织内部的不均匀性,晶体结构的微观缺陷、晶界、夹杂物和其他杂质的存在是导致疲劳寿命分散的重要原因。这种分散现象在增材制造制件中表现得尤为显著。金属增材制造过程中不可避免地会产生气孔和未熔合缺陷,产生的缺陷具有全域分布、形态多样、尺寸跨度大和形成机制复杂的特点,这导致增材制造制件的疲劳寿命更为分散,这种分散现象限制了疲劳寿命的精准预测。为了实现增材制件疲劳寿命的可靠性预测,同时考虑疲劳寿命的分散性和机器学习模型的不可解释性,本研究提出了一种集成物理信息的概率神经网络(Physics-informed probabilistic neural network, PIPNN)框架预测增材制件的疲劳寿命。该框架以概率统计的参数形式描述了疲劳寿命的离散性,通过物理定律和模型约束神经元和损失函数,引导网络学习到更符合疲劳过程的物理规律,以提高模型的可解释性和预测可靠性。
(1)通过标准差描述不同应力水平下疲劳寿命的分散性,并基于Basquin公式建立了新的疲劳寿命损失函数。通过结合疲劳寿命标准偏差随应力幅值减小而增大这一物理定律以及疲劳寿命损失函数模型分别对神经元和损失函数进行约束,构建了物理信息概率神经网络,以引导网络学习到更符