PINN物理信息网络 | 利用物理信息概率神经网络对寿命的可靠性预测

研究提出了一种集成物理信息的概率神经网络(PIPNN)框架,用于预测金属增材制造制件的疲劳寿命,解决寿命分散性和机器学习模型的不可解释性问题。PIPNN通过物理定律约束神经元和损失函数,提高预测的可解释性和可靠性。通过与PNN对比验证,PIPNN在疲劳寿命预测的精度和稳定性上表现更优。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

金属材料在制造过程中难以完全消除组织内部的不均匀性,晶体结构的微观缺陷、晶界、夹杂物和其他杂质的存在是导致疲劳寿命分散的重要原因。这种分散现象在增材制造制件中表现得尤为显著。金属增材制造过程中不可避免地会产生气孔和未熔合缺陷,产生的缺陷具有全域分布、形态多样、尺寸跨度大和形成机制复杂的特点,这导致增材制造制件的疲劳寿命更为分散,这种分散现象限制了疲劳寿命的精准预测。为了实现增材制件疲劳寿命的可靠性预测,同时考虑疲劳寿命的分散性和机器学习模型的不可解释性,本研究提出了一种集成物理信息的概率神经网络(Physics-informed probabilistic neural network, PIPNN)框架预测增材制件的疲劳寿命。该框架以概率统计的参数形式描述了疲劳寿命的离散性,通过物理定律和模型约束神经元和损失函数,引导网络学习到更符合疲劳过程的物理规律,以提高模型的可解释性和预测可靠性。

在这里插入图片描述

(1)通过标准差描述不同应力水平下疲劳寿命的分散性,并基于Basquin公式建立了新的疲劳寿命损失函数。通过结合疲劳寿命标准偏差随应力幅值减小而增大这一物理定律以及疲劳寿命损失函数模型分别对神经元和损失函数进行约束,构建了物理信息概率神经网络,以引导网络学习到更符

### 贝叶斯方法与物理信息神经网络PINN)的结合 贝叶斯物理信息神经网络(BPINN)是一种将贝叶斯方法融入到物理信息神经网络中的框架,旨在通过概率推理来增强传统 PINN 的性能适用范围。这种方法不仅保留了 PINN 对物理约束的支持,还利用贝叶斯统计学的优势提供了不确定性量化的能力。 #### BPINN 的核心概念 BPINN 将贝叶斯推断的思想应用于 PINN 中,允许模型参数的学习过程具有分布性质而非单一固定值。具体来说,在训练过程中,BPINN 不仅优化神经网络权重以最小化损失函数,还会考虑先验分布的影响以及后验分布的估计[^1]。这种机制使得 BPINN 可以更好地处理噪声数据并提供更可靠的预测结果及其置信区间。 #### 实现细节 为了实现 BPINN,通常采用变分推断或马尔可夫链蒙特卡洛采样等技术来进行近似后验计算。以下是其主要组成部分: 1. **定义目标函数** 结合标准 PINN 损失项与额外加入的正则化因子表示来自领域知识或者观测误差的信息。例如: \[ L(\theta) = MSE_{data} + \lambda_1 \cdot PDE\text{-loss} + \lambda_2 \cdot KL(q(w|\phi)||p(w)) \] 这里 \(MSE_{data}\) 表示数据拟合部分;\(PDE\)-loss 是满足偏微分方程条件的部分;而最后一项则是 Kullback-Leibler 散度用来衡量当前权值分布相对于预设先验的距离[^3]。 2. **选择合适的架构** 使用全连接前馈型或多层感知机作为基本单元结构,并适当调整层数宽度以便适应不同规模的任务需求。此外还可以探索其他类型的激活函数比如高阶多项式形式进一步提升表达力。 3. **评估不确定性鲁棒性** 利用得到的概率密度函数对未知输入给出可能取值范围内的多个样本输出从而完成风险分析等功能扩展. ```python import tensorflow as tf from tensorflow_probability import distributions as tfd class BayesianLayer(tf.keras.layers.Layer): def __init__(self, units=32, prior_stddev=1., likelihood_noise=.01,**kwargs): super(BayesianLayer,self).__init__(**kwargs) self.units = int(units) self.prior_stddev=prior_stddev self.likelihood_noise=tf.constant(likelihood_noise,dtype='float32') def build(self,input_shape): shape=(input_shape[-1],self.units) # Initialize weights with normal distribution centered at zero. w_init=tfd.Normal(loc=0,scale=self.prior_stddev).sample(shape) b_init=tf.zeros([self.units]) self.w_var=tf.Variable(initial_value=w_init,name="kernel",trainable=True) self.b_var=tf.Variable(initial_value=b_init,name="bias",trainable=True) @property def kernel_posterior(self): return tfd.MultivariateNormalDiag( loc=self.w_var, scale_diag=tf.ones_like(self.w_var)*self.prior_stddev) ... def bayes_pinn_model(): inputs = Input((n_features,)) hidden_layer = Dense(...)(inputs) ... output_distribution = BayesianOutputLayer()(hidden_layer) model = Model(inputs=[inputs], outputs=output_distribution.mean()) log_likelihood_loss_fn=lambda y_true,y_pred:-output_distribution.log_prob(y_true) kl_divergence_regularizer=get_kl_divergence_regularizer() total_loss=log_likelihood_loss_fn+kl_divergence_regularizer optimizer=tf.optimizers.Adam(lr=learning_rate) train_op=optimizer.minimize(total_loss,var_list=model.trainable_variables) ``` 上述代码片段展示了如何创建一个简单的带有贝叶斯层的基础版本 BPINNs 架构实例[^2]。 #### 应用案例 BPINN 已被成功应用于多种实际场景之中,包括但不限于以下几个方面: - 动态系统建模:如电力负荷波动趋势预测等问题; - 多尺度材料科学研究:研究纳米级至宏观层面物质行为之间的联系; - 流体力学数值求解:提高复杂流体流动现象的理解精度等等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab建模攻城师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值