数据特征降维 | 主成分分析(PCA)附Python代码

主成分分析(PCA)是一种数据降维技术,通过线性变换找到最大化方差的主成分,用于数据标准化、计算协方差矩阵、特征值分解、选择主成分并构造新特征空间。PCA适用于数据压缩、图像处理、模式识别和数据可视化。Python示例展示了PCA将鸢尾花数据集降维至2维的过程。
摘要由CSDN通过智能技术生成

主成分分析(Principal Component Analysis,PCA)是一种常用的数据降维技术和探索性数据分析方法,用于从高维数据中提取出最重要的特征并进行可视化。

PCA的基本思想是通过线性变换将原始数据投影到新的坐标系上,使得投影后的数据具有最大的方差。这些新的坐标轴称为主成分,按照其对应的方差大小依次排列,第一主成分对应方差最大,第二主成分对应方差次大,以此类推。通过选择最具代表性的主成分,可以实现数据的降维,并且保留了原始数据中最重要的结构信息。

以下是主成分分析的基本步骤:

数据标准化:对原始数据进行标准化处理,使得每个特征具有相同的尺度。这是因为PCA是基于数据的协方差矩阵计算的,而协方差受到数据尺度的影响。
计算协方差矩阵:根据标准化后的数据,计算特征之间的协方差矩阵。协方差矩阵描述了数据特征之间的相关性和方差。
特征值分解:对协方差矩阵进行特征值分解,得到特征值和对应的特征向量。特征值表示特征向量的重要性和方差贡献程度。
选择主成分:按照特征值从大到小的顺序选择主成分。通常会选择方差贡献较大的前几个主成分,以保留较多的信息。
构造新的特征空间:选取的主成分构成了新的特征空间,将原始数据投影到该空间中。这样可以实现数据的降维,并且保留了原始数据中最重要的结构信息。
可视化和解释:通过在新的特征空间

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

算法如诗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值