深度学习
文章平均质量分 71
视觉菜鸟Leonardo
隐姓埋名,勤学苦练。
展开
-
AI深度学习部署全记录
AI深度学习部署的全记录,给黑暗中前行的人一束烛光原创 2023-08-03 10:40:21 · 1971 阅读 · 0 评论 -
归一化流总结
归一化流总结原创 2023-05-19 15:13:06 · 922 阅读 · 0 评论 -
Ubuntu问题汇总
没有找到ifconfig的命令,需要进行安装,按照提示中的命令安装相关的工具包。查看gcc版本是7.5.0正常,因为之前改过一次内核版本,感觉是内核的问题。2.电脑自动更新了内核,导致之前的内核失效,可以去/boot目录下查看。3.重启服务器后,nvidia-smi找不到。1.sudo ifconfig 找不到命令。1.还没有安装完相关驱动;原创 2022-12-14 22:55:33 · 1263 阅读 · 0 评论 -
深度学习最终BOSS——TensorRT
TensoRT学习原创 2022-11-25 16:46:35 · 2350 阅读 · 0 评论 -
深度学习部署
深度学习部署原创 2022-11-04 21:17:15 · 1366 阅读 · 0 评论 -
无监督新篇章——Halcon深度学习
get_dict_param (DLSamples[0], 'key_exists', 'split', SplitExists):查询数据集参数。get_dl_model_param (DLModelHandle, 'type', ModelType):请求模型对图像施加的要求。get_dict_tuple (DLDataset, 'samples', DLSamples):将数据集参数传给模型。具体到每张图片,会根据文件名给分为ok还是ng。原创 2022-10-31 22:00:31 · 2472 阅读 · 0 评论 -
全面解析PaDiM
使用PaDiM网络跑自己的数据集,除去测试时读入dataloader的时间,每张图片测试时间在20-30ms,精度比较高,图像分类准确率99-100,像素分割准确率97以上,但是最大的问题是需要通过分割好的label来确定阈值选取(这一点必定要改过来)。for循环内的二次for循环:在tqdm的for循环中,每一次代表一轮batch(文章设置batchsize=32),每一轮读取32张图片,k代表layer1、layer2、layer3,v代表对应层数据,feats为从网络中提取到的每层数据。原创 2022-10-24 21:27:52 · 4859 阅读 · 12 评论 -
无监督异常检测中的阈值确定
实际部署中, 需要设置阈值判断待测样本是否属于异常类,无监督方法对缺陷发生概率的表达往往基于异常分数。(1)将归一化的注意力图作为异常分数图,用于像素级的缺陷分割,该方法对阈值设置不敏感(2)PaDiM利用多元高斯分布进行特征建模,使用马氏距离度量异常分数,需要通过相关公式理论推导得出保证假阳性率在预期范围内的分界阈值。但是:这些解决方法不具有普适性,仍然需要借助异常样本来确定最佳阈值,因此借鉴4种使用验证集来设置阈值的方法,且验证集中只包含正常样本。1.最大缺陷分数法:(没有误检,大量漏检)原创 2022-10-23 22:19:01 · 3016 阅读 · 0 评论 -
PyTorch遇到的问题
这是我在运行PatchCore时遇到的问题,纠结了很多天,最后在github上找的了解决办法,关于网上说的更改PYTHONPATH或者使用sys.path,我都试过,每一个有效的,最后没办法才使用了这种暴力方法。(3)在python环境下,路径前 的python 可能出问题。1.bash:export: “你的路径”:不是有效的标识符。/././. ...... 加上的话可能有问题可能没问题。/./././...... 去掉python。(1)的问题是最确定的,(2)(3)不一定。原创 2022-10-23 20:30:26 · 916 阅读 · 2 评论 -
YOLO目标检测
YOLO目标检测(项目开始)原创 2022-09-12 20:05:02 · 3737 阅读 · 0 评论 -
无监督异常检测(MVTec)
(排名第1)Towards Total Recall in Industrial Anomaly Detection (PatchCore)原创 2022-09-09 16:34:46 · 7700 阅读 · 0 评论 -
无监督学习分类
无监督学习分类原创 2022-09-07 20:35:17 · 3888 阅读 · 0 评论 -
(无监督)基于无监督学习的模板缺陷检测方法研究
(无监督论文)基于无监督学习的模板缺陷检测方法研究原创 2022-09-07 11:10:04 · 4127 阅读 · 7 评论 -
基于MVTec的无监督学习
基于MVTec的无监督学习原创 2022-09-05 22:40:53 · 2047 阅读 · 2 评论 -
无监督术语解释
无监督术语解释原创 2022-09-05 22:27:21 · 320 阅读 · 0 评论 -
无监督学习(吴恩达)
无监督学习原创 2022-09-09 09:00:53 · 311 阅读 · 0 评论 -
无监督学习 论文
无监督学习论文原创 2022-08-31 10:40:53 · 917 阅读 · 0 评论 -
工业检测深度学习方法综述
工业缺陷检测深度学习方法综述原创 2022-08-09 15:59:25 · 3721 阅读 · 0 评论 -
Transformer
transformer原创 2022-08-01 19:25:47 · 1748 阅读 · 0 评论 -
PP-LiteSeg
最新最强的实时分割网络——PP-LiteSeg原创 2022-07-29 15:34:54 · 3469 阅读 · 0 评论 -
基于PyTorch的FCN-8s语义分割模型搭建
对语义分割的学习进行总结:一、选取数据集初步学习语义分割,选取VOC2012数据集,该数据集分为21类,其中20类为前景物体,1类为背景。地址:http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar数据集下载后,对于语义分割网络主要用到"ImageSets","JPEGImages","SegmentationClass"三个文件夹,ImageSets\Segmentation包含训练集和验证集的图片名原创 2022-05-07 02:14:43 · 2423 阅读 · 0 评论 -
Pytorch语义分割理解
贴出部分pytorch的语义分割代码理解#读取图片image =PIL.Image.open("D:\\DataSets\\PascalVOC2012\\VOCdevkit\\VOC2012\\JPEGImages\\2010_003055.jpg")#图片预处理,转化为0-1之间image_transf =transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.485,0.456,0.40原创 2022-05-02 20:34:56 · 2671 阅读 · 0 评论 -
周志华机器学习
1.真正例率(TPR)、假正例率(FPR)与查准率(P)、查全率(R)之间的联系:查全率: 真实正例被预测为正例的比例真正例率: 真实正例被预测为正例的比例显然查全率与真正例率是相等的。查准率:预测为正例的实例中真实正例的比例假正例率: 真实反例被预测为正例的比例2.损失函数其实就是算罚分,模型预测质量越差,罚分越多。...原创 2022-05-02 20:12:14 · 474 阅读 · 0 评论 -
空洞卷积
膨胀卷积(空洞卷积 dilated convolution)_可口的可可的博客-CSDN博客_膨胀卷积因子转载 2022-04-30 22:06:13 · 97 阅读 · 0 评论 -
Pytorch问题总结
1.使用多线程时报错:Pytorch使用多线程加载数据报错_Restart丶的博客-CSDN博客_pytorch多线程加载数据将程序加入到if __name__ == "__main__" 中原创 2022-04-25 11:42:29 · 3402 阅读 · 0 评论 -
PyTorch
张量:形如标量、向量、矩阵之类的都属于张量使用后torch.tensor()函数生成一个张量,用.dtype方法获取张量的数据类型torch.set_default_tensor_type()函数设置默认的数据类型torch.arange(a,b):生成 a到b之间的数,不包括btorch.range(a,b):生成 a到b之间的数,包括b使用torch.manual_seed()保证每次生成的随机数相同torch.reshape()改变张量的形状,shape=(2,-1)表示将张量原创 2022-04-17 01:43:23 · 2218 阅读 · 0 评论 -
光条中心提取方法总结(二)
传统算法见之前的文章:光条中心提取方法总结(一)_视觉菜鸟Leonardo的博客-CSDN博客e二、深度学习方法利用深度学习来进行光条中心提取是这几年刚兴起的方法,目前可供参考的论文屈指可数。方法从两个途径切入:(1)利用深度学习进行光条图像处理,得到纯净无杂质的光条图像,再利用传统算法进行光条中心提取。(2)使用端到端深度学习直接提取光条中心先讨论第二种,端到端深度学习1.构建了语义分割与目标检测相结合的深度学 习模型用于焊缝图像的检测论文:焊缝图像中结构光条纹的检测与分割原创 2022-04-13 23:19:12 · 2102 阅读 · 0 评论 -
Lee‘s way of Deep Learning 深度学习笔记
跟随吴恩达教授的深度学习课程,在这记录笔记。B站视频:[双语字幕]吴恩达深度学习deeplearning.ai_哔哩哔哩_bilibili一、神经网络1.什么是神经元:中间圆圈代表神经元,在这个神经元中可以完成从size到price的变化,也就是说神经元起到一个函数作用。神经元中经常出现这个函数,称为“Relu函数”,意为“修正”,舍去所有负值,将其变为0。往往影响输出y的因素有很多个,由不同的神经元组成:二、监督学习现阶段的神经网络基本上都是...原创 2022-04-13 14:37:53 · 1398 阅读 · 0 评论