基于模糊理论的广西城市的分类
利用MATLAB的模糊聚类分析实现城市分类的智能计算
文章简介:利用MATLAB的模糊聚类分析实现城市分类的智能计算,使用到了模糊控制算法,有兴趣的友友可以看看。都是一些比较基础的代码。
一、研究背景
城市分类,根据城市职能、城市规模、城市形态等方面的差异对城市进行的类分。城市之间的差异反映在人口规模与结构、产业结构、城市形态,生活方式和生活水平、地理位置及历史沿革等诸多方面。城市的分类,因不同的目的和要求,选用上述一个或几个指标进行而有所区别,体现城市性质的职能分类,根据人口数量而作的规模分类、反映城市外貌的形态分类,以及按照地理、交通位置或历史起源把城市分成不同类型。其中城市职能分类和规模分类最能揭示城市的基本特征,因而受到广泛的重视。
二、研究目的
通过掌握数据文件的标准化、模糊相似矩阵的建立方法、学会传递闭包矩阵的求解方法;使用MATLAB软件进行模糊矩阵的编程运算和仿真,实现模糊聚类分析;对广西的城区面积和城区人口数据进行城市分类,将广西21座城市进行划分,有助于完善城市城区面积和城区人口的分类系统;这有助于挖掘城市发展的规律与特点,深化城市发展的理论研究;同时有助于决策者在面临城市发展规划作出最优决策,从而能更好的对广西城市发展做更好的规划。因此,在广西城市发展战略的大背景下有很强的理论和现实意义。
三、研究内容
1、根据下面表格中的数据,用Matlab编程进行数据标准化处理;
2、根据标准化处理后的数据,用Matlab编程,建立模糊相似矩阵,并编程求出其传递闭包矩阵;
3、建立模糊等价矩阵,根据原始数据,对广西城市进行分类并分析
四、方法步骤
- 将表《2017年全国城市人口和建设用地》中广西壮族自治区21所城市的城区人口和城区面积数据导入MATLAB软件;
程序见附录1:
- 读取数据的高和宽,建立原始矩阵A,对原始矩阵A应用极差正规化方法进行数据规格化,得到数据矩阵。
程序见附录2:
- 对数据矩阵应用最小最大法得到模糊相似矩阵。
程序见附录3:
- 应用传递闭包方法将模糊相似矩阵转化为模糊等价矩阵。
程序见附录4:
- 建立λ-截矩阵,按照λ有大到小进行聚类分析。
程序见附录5: