2. 可分离变量的微分方程

2. 可分离变量的微分方程

这里通过一个例子来引出。

如何去解 d y d x = 2 x y 2 \frac{dy}{dx} = 2xy^2 dxdy=2xy2

由于方程的右端含有自变量 x x x ,我们很难解出微分方程的解。

此时不妨同时两边同乘 d x y 2 \frac{dx}{y^2} y2dx,方程变为 d y y 2 = 2 x   d x \frac{dy}{y^2}= 2x \ dx y2dy=2x dx

对两端积分就得到 − 1 y = x 2 + C -\frac{1}{y}=x^2+C y1=x2+C,再变形就得到 y y y 关于 x x x 的函数。

2.1 基本概念

一般地,如果一个一阶方程能写成 g ( y )   d y = f ( x )   d x g(y)\ dy =f(x) \ dx g(y) dy=f(x) dx 的形式,那么原方程称为 可分离变量的微分方程(就是能把微分方程能写成一端只含 y y y 的函数和 d y dy dy,另一端只含 x x x 的函数和 d x dx dx)。

2.2 例题

来自同济《高等数学》p306

有高为1m的半球形容器,水从它的底部小孔流出,小孔横截面积为 1 c m 2 1cm^2 1cm2。开始时容器内装满了水,求水从小孔流出过程中容器里水面的高度 h h h(水面与孔口中心间的距离)随时间 t t t 变化的规律,并求水流完所需的时间。

由物理学可知,水的流量 Q Q Q 就是每单位时间内通过小孔横截面的水的体积 V V V

Q = d V d t = k S 2 g h Q = \frac{dV}{dt} = kS\sqrt{2gh} Q=dtdV=kS2gh

其中 k k k 为流量系数, k = 0.62 k=0.62 k=0.62 S S S 为孔口横截面积, g g g 是当地的重力加速度。

还能知道,在极短的时间内,当水位从 h h h 下降到 h + d h h+dh h+dh d h < 0 dh<0 dh<0)时,

d V = − π r 2 d h dV = -\pi r^2 dh dV=πr2dh

其中 r r r 是当前时刻水面半径。

且由勾股定理可以知道 r = 1 − ( 1 − h ) 2 = 2 h − h 2 r=\sqrt{1-(1-h)^2} = \sqrt{2h-h^2} r=1(1h)2 =2hh2

d V = − π ( 2 h − h 2 ) d h dV = -\pi (2h-h^2) dh dV=π(2hh2)dh

再结合流量 Q Q Q 的式子可以知道

k S 2 g h   d t = − π ( 2 h − h 2 ) d h kS\sqrt{2gh} \ dt = -\pi (2h-h^2) dh kS2gh  dt=π(2hh2)dh

此时微分方程为可分离变量的微分方程,分离变量可以得到

d t = − π k S 2 g ( 2 h 1 2 − h 3 2 )   d h dt = -\frac{\pi}{kS\sqrt{2g}}(2h^{\frac{1}{2}}-h^{\frac{3}{2}})\ dh dt=kS2g π(2h21h23) dh

这时候对两端同时积分可以得到

t = − π k S 2 g ( 4 3 h 3 2 − 2 5 h 5 2 + C ) t = -\frac{\pi}{kS\sqrt{2g}}(\frac{4}{3}h^{\frac{3}{2}}-\frac{2}{5}h^{\frac{5}{2}}+ C) t=kS2g π(34h2352h25+C)

还知道 h ∣ t = 0 = 1 h|_{t=0}=1 ht=0=1

此时就能求出 C C C 的值,最后令 h = 0 h=0 h=0,再代入相关数据便可求出水流完所需时间。

通过对微小量分析而得到微分方程,也是确立微分方程的一种常用方法。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值