7. 常系数齐次线性微分方程

7. 常系数齐次线性微分方程

由于高阶齐次微分方程的解法可以从二阶推广到 n 阶,这里选择遵从课本,讨论二阶常系数齐次线性微分方程。

此时我们记方程为 y ′ ′ + p y ′ + q y = 0 y'' + py' + qy = 0 y′′+py+qy=0,(其中 p , q p,q p,q 为常数)

① 若 p , q p,q p,q 全为常数,那么称方程为 二阶常系数齐次线性微分方程 ‾ \underline{二阶常系数齐次线性微分方程} 二阶常系数齐次线性微分方程

② 若 p , q p,q p,q 不全为常数,那么称方程为 二阶变系数齐次线性微分方程 ‾ \underline{二阶变系数齐次线性微分方程} 二阶变系数齐次线性微分方程

由上节的内容可以知道,要找微分方程的通解,可以先找两个线性无关的通解: y 1 y_1 y1 y 2 y_2 y2,则 y = C 1 y 1 + C 2 y 2 y=C_1y_1+C_2y_2 y=C1y1+C2y2 就是方程的通解。

显而易见,我们希望 y 1 y_1 y1 y 2 y_2 y2 的形式越接近越好,那么我们可以考虑现阶段可以接触到的,只需要一点点改变就可以使 y 1 y_1 y1 y 2 y_2 y2 变为线性无关的函数。

此时不难想到,我们可以使用指数函数,而比较常用的就是 e x e^x ex

我们不妨设 y = e r x y=e^{rx} y=erx 为方程可能的解,其中 r r r 为任意常数。

课本上对于这里使用 e r x e^{rx} erx 的解释是这样的:
r r r 为常数的时候指数函数 y = e r x y=e^{rx} y=erx 和它的各阶导数都只差一个常数因子,由于指数函数有这个特点,因此我们用 y = e r x y=e^{rx} y=erx 来尝试,看能否选取适当的实数 r r r ,使 y = e r x y=e^{rx} y=erx 满足方程。

y = e r x , y ′ = r e r x , y ′ ′ = r 2 e r x y=e^{rx},y'=re^{rx},y''=r^2e^{rx} y=erx,y=rerx,y′′=r2erx ,代入原方程则有 ( r 2 + p r + q ) e r x = 0 (r^2+pr+q)e^{rx}=0 (r2+pr+q)erx=0 ,即 r 2 + p r + q = 0 r^2+pr+q=0 r2+pr+q=0

此时我们只要求出 r r r ,就可以指知道原方程的解,甚至更能进一步得到方程的通解。

这里,我们将代数方程 r 2 + p r + q = 0 r^2+pr+q=0 r2+pr+q=0 称为原微分方程的 特征方程 ‾ \underline{特征方程} 特征方程

由求根公式有 r 1 , 2 = − p ± p 2 − 4 q 2 r_{1,2}=\frac{-p\pm\sqrt{p^2-4q}}{2} r1,2=2p±p24q ,但是此时我们仍然不能忘记讨论判别式与0的关系。

(i) p 2 − 4 q > 0 p^2-4q>0 p24q>0
此时, r 1 r_1 r1 r 2 r_2 r2 是两个不相等的实根。 r 1 = − p + p 2 − 4 q 2 r_1=\frac{-p+\sqrt{p^2-4q}}{2} r1=2p+p24q , r 2 = − p − p 2 − 4 q 2 r_2=\frac{-p-\sqrt{p^2-4q}}{2} r2=2pp24q

此时 y 2 y 1 = e ( r 2 − r 1 ) x \frac{y_2}{y_1}=e^{(r_2-r_1)x} y1y2=e(r2r1)x 不为常数,即表明 y 1 y_1 y1 y 2 y_2 y2 线性无关,那么此时方程的通解就是 y = C 1 e r 1 x + C 2 e r 2 x y=C_1e^{r_1x}+C_2e^{r_2x} y=C1er1x+C2er2x

(ii) p 2 − 4 q = 0 p^2-4q=0 p24q=0
此时, r 1 r_1 r1 r 2 r_2 r2 是两个相等的实根。 r 1 = r 2 = − p 2 r_1=r_2=-\frac{p}{2} r1=r2=2p

我们相当于只得到微分方程的一个解: y 1 = e r 1 x y_1=e^{r_1x} y1=er1x

根据上一节的内容,此时不妨设 y 2 = u ( x ) y 1 y_2=u(x)y_1 y2=u(x)y1,则有 y 2 ′ = ( u ′ + r 1 u ) e r 1 x y_2'=(u'+r_1u)e^{r_1x} y2=(u+r1u)er1x, y 2 ′ ′ = e r 1 x ( u ′ ′ + 2 r 1 u ′ + r 1 2 u ) y_2''=e^{r_1x}(u''+2r_1u'+r_1^2u) y2′′=er1x(u′′+2r1u+r12u)

此时代入原方程就有 u ′ ′ + ( 2 r 1 + p ) u ′ + ( r 1 2 + p r 1 + q ) u = 0 u''+(2r_1+p)u'+(r_1^2+pr_1+q)u=0 u′′+(2r1+p)u+(r12+pr1+q)u=0

r 1 2 + p r 1 + q = 0 r_1^2+pr_1+q=0 r12+pr1+q=0 2 r 1 + p = 0 2r_1+p=0 2r1+p=0

就有 u ′ ′ = 0 u''=0 u′′=0,此时我们不妨取 u = x u=x u=x ,那么 y 2 = x e r 1 x y_2=xe^{r_1x} y2=xer1x 就是满足方程的另一个解。

则此时方程的通解为 y = C 1 e r 1 x + C 2 x e r 1 x y=C_1e^{r_1x}+C_2xe^{r_1x} y=C1er1x+C2xer1x

(iii) p 2 − 4 q < 0 p^2-4q<0 p24q<0
此时,方程在实数域上无解,在复数域上有解。

要求得复数域上的两个解,我们依旧可以使用求根公式来求得。(求根公式是用配方法得到的,在复数域上也成立)

与刚刚不同的是,此时 r 1 r_1 r1 r 2 r_2 r2 是一对共轭复根。 r 1 , 2 = α ± β i r_{1,2}=\alpha \pm\beta i r1,2=α±βi ,其中 α = − p 2 \alpha = -\frac{p}{2} α=2p, β = 4 q − p 2 2 \beta=\frac{\sqrt{4q-p^2}}{2} β=24qp2

y 1 = e ( α + β i ) x y_1=e^{(\alpha + \beta i)x} y1=e(α+βi)x y 2 = e ( α − β i ) x y_2=e^{(\alpha - \beta i)x} y2=e(αβi)x 是微分方程的两个解。

可是复值函数的形式并不太友好,我们需要利用欧拉公式( e i θ = c o s θ + i s i n θ e^{i\theta}=cos \theta+isin\theta eiθ=cosθ+isinθ)来将函数 y 1 y_1 y1 y 2 y_2 y2 转化为实值函数的形式。

那么就有:

y 1 = e ( α + β i ) x = e α x ⋅ e β x i = e α x ( c o s β x + i s i n β x ) y_1=e^{(\alpha + \beta i)x}=e^{\alpha x} \cdot e^{\beta x i}=e^{\alpha x}(cos \beta x+isin \beta x) y1=e(α+βi)x=eαxeβxi=eαx(cosβx+isinβx)

同理, y 2 = e ( α − β i ) x = e α x ( c o s β x − i s i n β x ) y_2=e^{(\alpha - \beta i)x}= e^{\alpha x}(cos\beta x-isin\beta x) y2=e(αβi)x=eαx(cosβxisinβx)

由于 y 1 y_1 y1 y 2 y_2 y2 都是方程的解,那么我们根据方程解的叠加原理,可以消去 i i i ,而只要实部与虚部,此时的两个函数也是方程的解。

这里写作 Y 1 = 1 2 ( y 1 + y 2 ) = e α x ⋅ c o s β x , Y 2 = 1 2 i ( y 1 − y 2 ) = e α x ⋅ s i n β x Y_1=\frac{1}{2}(y_1+y_2)=e^{\alpha x}\cdot cos \beta x,Y_2=\frac{1}{2i}(y_1-y_2)=e^{\alpha x} \cdot sin \beta x Y1=21(y1+y2)=eαxcosβx,Y2=2i1(y1y2)=eαxsinβx

易知 Y 1 Y_1 Y1 Y 2 Y_2 Y2 线性无关,那么我们就可以知道此时原方程的通解为 y = e α x ( C 1 c o s β x + C 2 s i n β x ) y=e^{\alpha x}(C_1 cos \beta x+C_2sin\beta x) y=eαx(C1cosβx+C2sinβx)

总结

由上面的内容,我们可以归结求二阶常系数齐次微分方程的步骤如下:

  1. 写出方程的特征方程 r 2 + p r + q = 0 r^2+pr+q=0 r2+pr+q=0
  2. 判断 p 2 − 4 q p^2-4q p24q,从而决定如何继续求解
  3. 利用求根公式求 r 1 , r 2 r_1,r_2 r1,r2
情况特征方程的根通解表达式
(i) ( p 2 − 4 q > 0 ) (p^2-4q > 0) (p24q>0) ( y = C 1 e r 1 x + C 2 e r 2 x ) (y = C_1e^{r_1x} + C_2e^{r_2x}) (y=C1er1x+C2er2x)
(ii) ( p 2 − 4 q = 0 ) (p^2-4q = 0) (p24q=0) ( y = C 1 e r 1 x + C 2 x e r 1 x ) (y = C_1e^{r_1x} + C_2xe^{r_1x}) (y=C1er1x+C2xer1x)
(iii) ( p 2 − 4 q < 0 ) (p^2-4q < 0) (p24q<0) ( y = e α x ( C 1 cos ⁡ β x + C 2 sin ⁡ β x ) ) (y = e^{\alpha x}(C_1 \cos \beta x + C_2 \sin \beta x)) (y=eαx(C1cosβx+C2sinβx))

例题

微分方程与物理的一些应用题联系较为紧密,但是这个并不打算深入探讨涉及到的物理应用题部分,只是给出课本上所涉及到的内容:

  1. 无阻尼自由振动的方程(涉及到简谐振动,固有频率,重点在于其中的一步变换)
  2. 对有阻尼时物体运动规律的深入讨论

这里只给出两个简单的例题来让大家体会一下这个解题过程。

1. 求微分方程 y ′ ′ + y ′ − 2 y = 0 y''+y'-2y=0 y′′+y2y=0 的通解。

首先我们写出方程的特征方程为 r 2 + r − 2 = 0 r^2+r-2=0 r2+r2=0

容易判断 p 2 − 4 q = 9 > 0 p^2-4q=9>0 p24q=9>0,可求 r 1 = − 2 , r 2 = 1 r_1=-2,r_2=1 r1=2,r2=1

那么我们很容易得到 y = C 1 e − 2 x + C 2 e x y=C_1e^{-2x}+C_2e^x y=C1e2x+C2ex 为方程通解

2. 求方程 y ′ ′ − 4 y ′ + 3 y = 0 y''-4y'+3y=0 y′′4y+3y=0 满足初值条件 y ∣ x = 0 = 6 , y ′ ∣ x = 0 = 10 y|_{x=0}=6,y'|_{x=0}=10 yx=0=6,yx=0=10 的特解。

首先我们写出方程的特征方程为 r 2 − 4 r + 3 = 0 r^2-4r+3=0 r24r+3=0

p 2 − 4 q = 4 > 0 p^2-4q=4>0 p24q=4>0,且可求 r 1 = 1 , r 2 = 3 r_1=1,r_2=3 r1=1,r2=3

那么我们就得到 y = C 1 e x + C 2 e 3 x y=C_1e^x+C_2e^{3x} y=C1ex+C2e3x 为方程的通解。

y ∣ x = 0 = C 1 + C 2 = 6 y|_{x=0}=C_1+C_2=6 yx=0=C1+C2=6

y ′ = C 1 e x + 3 C 2 e 3 x y'=C_1e^x+3C_2e^{3x} y=C1ex+3C2e3x ,代入 x = 0 x=0 x=0 C 1 + 3 C 2 = 10 C_1+3C_2=10 C1+3C2=10

联立两个方程

{ C 1 + C 2 = 6 C 1 + 3 C 2 = 10 \begin{cases} C_1+C_2=6 \\ C_1+3C_2=10 \end{cases} {C1+C2=6C1+3C2=10

不难求出 C 1 = 4 , C 2 = 2 C_1=4,C_2=2 C1=4,C2=2

则所求即为 y = 4 e x + 2 e 3 x y=4e^x+2e^{3x} y=4ex+2e3x

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值