3. 齐次方程求解

3. 齐次方程

3.1 基本概念

如果一阶微分方程可以化成 d y d x = ϕ ( y x ) \frac{dy}{dx} = \phi\left(\frac{y}{x}\right) dxdy=ϕ(xy) 的形式,那么就称这个方程为 齐次方程

3.2 如何解齐次方程?

同样的,这里我们通过一个例子来让大家体会一下解此类方程的过程

解方程 ( x y − y 2 ) d x − ( x 2 − 2 x y ) d y = 0 (xy-y^2)dx-(x^2-2xy)dy= 0 (xyy2)dx(x22xy)dy=0

不难发现,我们通过变形可以将方程变成这样 d y d x = x y − y 2 x 2 − 2 x y = y x − ( y x ) 2 1 − 2 y x \frac{dy}{dx}=\frac{xy-y^2}{x^2-2xy}=\frac{\frac{y}{x}-(\frac{y}{x})^2}{1-2\frac{y}{x}} dxdy=x22xyxyy2=12xyxy(xy)2

这里令 t = y x t=\frac{y}{x} t=xy ,那么 y = t x y=tx y=tx , d y d x = t + x d t d x \frac{dy}{dx}=t+x\frac{dt}{dx} dxdy=t+xdxdt

(注意这里t是一个关于x的变量,而不是常数)

那么代回原式就得到 t + x d t d x = t − t 2 1 − 2 t t+x\frac{dt}{dx} = \frac{t-t^2}{1-2t} t+xdxdt=12ttt2

不难发现此时方程变成可分离变量的方程,那么我们继续解这个方程

x d t d x = t − t 2 1 − 2 t − t = t 2 1 − 2 t x\frac{dt}{dx} = \frac{t-t^2}{1-2t}-t = \frac{t^2}{1-2t} xdxdt=12ttt2t=12tt2

d x x = 1 − 2 t t 2 d t \frac{dx}{x} = \frac{1-2t}{t^2}dt xdx=t212tdt

ln ⁡ ∣ x ∣ = − 2 ln ⁡ ∣ t ∣ − 1 t + C \ln|x| = -2\ln|t|-\frac{1}{t}+C lnx=2lntt1+C

此时反代 t = y x t=\frac{y}{x} t=xy 就得到原方程的解

这个过程主要是通过一步换元来使过程更加易读,使人更容易找到解法

3.3 可化为齐次的方程

方程 d y d x = a x + b y + c a 1 x + b 1 y + c 1 \frac{dy}{dx} =\frac{ax+by+c}{a_1x+b_1y+c_1} dxdy=a1x+b1y+c1ax+by+c ,只有当 c = c 1 = 0 c=c_1=0 c=c1=0 的时候才是齐次方程,那么当 c ≠ c 1 c \neq c_1 c=c1 ,且二者都不为0的时候,如何进行转换来进行求解呢?

这里令 x = X + h , y = Y + k x=X+h, y=Y+k x=X+h,y=Y+k

那么就有 d Y d X = a x + b y + a h + b k + c a 1 x + b 1 y + a 1 h + b 1 k + c 1 \frac{dY}{dX}=\frac{ax+by+ah+bk+c}{a_1x+b_1y+a_1h+b_1k+c_1} dXdY=a1x+b1y+a1h+b1k+c1ax+by+ah+bk+c

3.3.1 情况①

{ a h + b k + c = 0 a 1 h + b 1 h + c 1 = 0 \begin{cases}ah+bk+c=0 \\ a_1h+b_1h+c_1 = 0\end{cases} {ah+bk+c=0a1h+b1h+c1=0 的系数行列式 [ a b a 1 b 1 ] ≠ 0 \left[ \begin{matrix} a & b\\a_1 & b_1 \end{matrix} \right] \neq 0 [aa1bb1]=0 ,那么这个时候就可以确定 h , k h,k h,k 来进行转换。

3.3.2 情况②

可是还存在 [ a b a 1 b 1 ] = 0 \left[ \begin{matrix} a & b\\a_1 & b_1 \end{matrix} \right] = 0 [aa1bb1]=0 的情况,要怎么办呢?

此时令 a a 1 = b b 1 = λ \frac{a}{a_1}=\frac{b}{b_1} = \lambda a1a=b1b=λ

原方程就变成 d y d x = λ ( a 1 x + b 1 y ) + c ( a 1 x + b 1 y ) + c 1 \frac{dy}{dx} = \frac{\lambda(a_1x+b_1y)+c}{(a_1x+b_1y)+c_1} dxdy=(a1x+b1y)+c1λ(a1x+b1y)+c

再令 u = a 1 x + b 1 y u=a_1x+b_1y u=a1x+b1y ,那么就有 d u d x = a 1 + b 1 d y d x \frac{du}{dx} = a_1+b_1\frac{dy}{dx} dxdu=a1+b1dxdy

⇒ d y d x = 1 b 1 ( d u d x − a 1 ) \Rightarrow \frac{dy}{dx} = \frac{1}{b_1}\left(\frac{du}{dx}-a_1\right) dxdy=b11(dxdua1)

那么代入原式就有 1 b 1 ( d u d x − a 1 ) = λ u + c u + c 1 \frac{1}{b_1}\left(\frac{du}{dx}-a_1\right) = \frac{\lambda u+c}{u+c_1} b11(dxdua1)=u+c1λu+c

此时方程可以进行变量分离,下面的过程略。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值