9. 欧拉方程

9. 欧拉方程

9.1 基本概念

形如: x n y ( n ) + P 1 x n − 1 y ( n − 1 ) + ⋯ + P n − 1 x y ′ + P n y = f ( x ) x^ny^{(n)}+P_1x^{n-1}y^{(n-1)}+\dots+P_{n-1}xy^{'}+P_ny=f(x) xny(n)+P1xn1y(n1)++Pn1xy+Pny=f(x) 的方程,其中 P 1 , P 2 , … , P n P_1,P_2,\dots,P_n P1,P2,,Pn 为常数,被称为欧拉方程。

为了解这个方程,此处令 x = e t x=e^t x=et ,再将自变量 x x x 换成 t t t

此时有 d y d x = d y d t ⋅ d t d x = 1 x ⋅ d y d t \frac{dy}{dx}=\frac{dy}{dt}\cdot \frac{dt}{dx}=\frac{1}{x}\cdot \frac{dy}{dt} dxdy=dtdydxdt=x1dtdy

这里给演示如何求 d 2 y d x 2 \frac{d^2y}{dx^2} dx2d2y ,如果要继续往下推导,需要读者自行尝试。

d 2 y d x 2 = d d y d x d x = d ( 1 x d y d t ) d x = − 1 x 2 ⋅ d y d t d x + 1 x ⋅ d ( d y d t ) d x = − 1 x 2 d y d t + 1 x ⋅ d ( d y d t ) d t ⋅ d t d x = − 1 x 2 d y d t + 1 x 2 d 2 y d t 2 = 1 x 2 ( d 2 y d t 2 − d y d t ) \frac{d^2y}{dx^2}=\frac{d\frac{dy}{dx}}{dx}=\frac{d(\frac{1}{x}\frac{dy}{dt})}{dx}=\frac{-\frac{1}{x^2}\cdot \frac{dy}{dt}dx+\frac{1}{x}\cdot d(\frac{dy}{dt})}{dx}=-\frac{1}{x^2}\frac{dy}{dt}+\frac{1}{x}\cdot\frac{d(\frac{dy}{dt})}{dt}\cdot \frac{dt}{dx}=-\frac{1}{x^2}\frac{dy}{dt}+\frac{1}{x^2}\frac{d^2y}{dt^2}=\frac{1}{x^2}(\frac{d^2y}{dt^2}-\frac{dy}{dt}) dx2d2y=dxddxdy=dxd(x1dtdy)=dxx21dtdydx+x1d(dtdy)=x21dtdy+x1dtd(dtdy)dxdt=x21dtdy+x21dt2d2y=x21(dt2d2ydtdy)

此时还有 d 3 y d x 3 = 1 x 3 ( d 3 y d t 3 − 3 d 2 y d t 2 + 2 d y d t ) \frac{d^3y}{dx^3}=\frac{1}{x^3}(\frac{d^3y}{dt^3}-3\frac{d^2y}{dt^2}+2\frac{dy}{dt}) dx3d3y=x31(dt3d3y3dt2d2y+2dtdy)

如果此时用记号 D D D 表示对 t t t 求导的运算,即 D D D 表示 d d t \frac{d}{dt} dtd

那么上面的式子就可以变化为

x y ′ = D y , x 2 y ′ ′ = D ( D − 1 ) y , x 3 y ′ ′ ′ = D ( D − 1 ) ( D − 2 ) y xy^{'}=Dy,x^2y^{''}=D(D-1)y,x^3y^{'''}=D(D-1)(D-2)y xy=Dy,x2y′′=D(D1)y,x3y′′′=D(D1)(D2)y

那么就可以归纳出 x k y ( k ) = D ( D − 1 ) ( D − 2 ) ⋯ ( D − k + 1 ) y x^ky^{(k)}=D(D-1)(D-2)\cdots (D-k+1)y xky(k)=D(D1)(D2)(Dk+1)y

我们将此式代入原方程,就可以得到一个以 t t t 为自变量的常系数线性微分方程,最终再用 t = ln ⁡ x t=\ln x t=lnx 反代就可得到方程的解。

9.2 例题

这里只给出一个例子来让大家体会过程

求欧拉方程 x 3 y ′ ′ ′ + x 2 y ′ ′ − 4 x y ′ = 3 x 2 x^3y^{'''}+x^2y^{''}-4xy^{'}=3x^2 x3y′′′+x2y′′4xy=3x2 的通解

我们作变换 x = e t x=e^t x=et ,那么原式就变为 D ( D − 1 ) ( D − 2 ) y + D ( D − 1 ) y − 4 D y = 3 e 2 t D(D-1)(D-2)y+D(D-1)y-4Dy=3e^{2t} D(D1)(D2)y+D(D1)y4Dy=3e2t

将此方程化简则有 D 3 y − 2 D 2 y − 3 D y = 3 e 2 t D^3y-2D^2y-3Dy=3e^{2t} D3y2D2y3Dy=3e2t

此时方程对应的齐次方程为 d 3 y d t 3 − 2 d 2 y d t 2 − 3 d y d t = 0 \frac{d^3y}{dt^3}-2\frac{d^2y}{dt^2}-3\frac{dy}{dt}=0 dt3d3y2dt2d2y3dtdy=0

其特征方程为 r 3 − 2 r 2 − 3 r = 0 r^3-2r^2-3r=0 r32r23r=0

易求它有三个解 r 1 = 0 , r 2 = − 1 , r 3 = 3 r_1=0,r_2=-1,r_3=3 r1=0,r2=1,r3=3

那么齐次方程的通解为 Y = C 1 + C 2 e − t + C 3 e 3 t Y=C_1+C_2e^{-t}+C_3e^{3t} Y=C1+C2et+C3e3t

又因为方程右侧 3 e 2 t 3e^{2t} 3e2t P m e λ x P_me^{\lambda x} Pmeλx 型的微分方程,运用上一节中的方法(这一部分略,读者可以自行尝试),这样我们就可以求得答案为

y = C 1 + C 2 x − 1 + C 3 x 3 − 1 2 x 2 y=C_1+C_2x^{-1}+C_3x^3-\frac{1}{2}x^2 y=C1+C2x1+C3x321x2

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值