本篇文章将介绍一个新的改进机制——矩形自校准模块RCM,并阐述如何将其应用于YOLOv11中,显著提升模型性能。首先,我们将解析RCM的工作原理,RCM通过矩形自校准注意力机制和形状自校准捕捉全局上下文信息,并结合局部细节融合,提升模型对前景物体的建模能力和边界识别精度。为了解决复杂场景中难以处理前景背景分割、精确定位和多尺度物体检测这些问题,我们将RCM(矩形自校准模块)与YOLOv11结合,利用RCM的上下文捕捉与特征增强能力,提升YOLOv11的检测性能。随后,本文将详细讨论如何将RCM引入YOLOv11模型中,优化其目标检测能力。
YOLOv11改进-模块-引入矩形自校准模块RCM有利于复杂场景(小目标、遮挡等)
于 2024-10-17 12:21:18 首次发布