YOLO11改进-模块-引入残差哈尔离散小波变换RHDWT 降噪、减少特征丢失,增强小目标和遮挡的检测能力

        在红外图像去条纹领域,独立采样器常出现语义和结构信息丢失的情况。如离散小波变换(DWT)虽能对条纹噪声方向性建模,但仅局限于空间采样,缺乏通道间的交互;而步长卷积(SC)虽考虑了空间和语义特征,却忽略了噪声的方向先验。这些问题使得传统采样方法在特征表示上存在不足,难以满足精确去条纹的需求,因此需要一种新的采样方式来解决这些问题。

上面是原模型,下面是改进模型

改进后的模型

1. 残差哈尔离散小波变换RHDWT 介绍 

       RHDWT 创新性地将模型驱动分支和残差分支相结合。模型驱动分支利用 Haar DWT(HDWT),融入条纹方向先验知识,对原始特征进行分解,把条纹噪声聚集到特定子带,为后续处理提供基础。残差分支则通过数据驱动的跨通道语义,补充模型驱动分支的信息,弥补其在语义交互上的不足。两者相加,能够更全面地描述图像特征,提升对条纹噪声的表征能力,有效克服了传统独立采样器的缺陷,为准确去除红外图像条纹噪声奠定了理论基础。

从提供的图片来看,RHDWT 模块主要包含以下几个部分:

        RHDWT 由模型驱动分支和残差分支组成。输入特征先经 HDWT 分解为四个子图,将四个特征图其拼接后,经 3×3 卷积和 LeakyReLU 激活,得到模型驱动分支输出Imodelout​ ;残差分支则通过步长为 2 的 3×3 卷积聚合空间和语义特征,得到输出Iresout​ 。最终将两个分支输出相加,得到 RHDWT 的输出结果IR​。

2. YOLOv11与残差哈尔离散小波变换RHDWT 的结合           

        用 RHDWT 替换 YOLOv11 Backbone 中的 Conv ,利用RHDWT 独特的双分支结构能结合条纹方向先验与跨通道语义信息,增强对复杂特征尤其是含条纹红外图像特征的提取能力,让模型对目标特征的理解更精准。同时,频域信息的加入,为模型提供了额外的特征维度。不同频率的信号可以反映图像的不同特性,低频部分可能包含图像的整体结构信息,高频部分则对应图像的细节特征,这些丰富的频域特征能帮助模型更全面地理解图像。

3. 残差哈尔离散小波变换RHDWT代码部分

视频讲解:

YOLOv8_improve/YOLOv11.md at master · tgf123/YOLOv8_improve · GitHubYOLOv11模型改进讲解,教您如何修改YOLOv11_哔哩哔哩_bilibili

YOLOv11全部代码,现有几十种改进机制。

 4. 残差哈尔离散小波变换RHDWT引入到YOLOv11中

第一: 将下面的核心代码复制到D:\model\yolov11\ultralytics\change_model路径下,如下图所示。

                     

第二:在task.py中导入

 ​​​          ​​​​​​​        

第三:在task.py中的模型配置部分下面代码

 ​​​​​​​ ​​​​​​​ ​​​​​​​​​​​​​​​​​​​​​ ​​​​​​​​​​​​​​ ​​​​​​​ ​​​​​​​    ​​​​​​​ ​​​​​​​  ​​​​​​​         

第四:将模型配置文件复制到YOLOV11.YAMY文件中

     ​​​​​​​ ​​​​​​​​​​​​​​ ​​​​​​​ ​​​​​​​​​​​​​​ ​​​​​​​ ​​​​​​​ ​​​​​​​ ​​​​​​​          

     第五:运行成功

from sympy import false

from ultralytics.models import NAS, RTDETR, SAM, YOLO, FastSAM, YOLOWorld

if __name__=="__main__":

    # 使用自己的YOLOv8.yamy文件搭建模型并加载预训练权重训练模型
    model = YOLO(r"E:\Part_time_job_orders\YOLO\YOLOv11\ultralytics\cfg\models\11\yolo11_RHDWT.yamy")\
        .load(r'E:\Part_time_job_orders\YOLO\YOLOv11\yolo11n.pt')  # build from YAML and transfer weights

    results = model.train(data=r'E:\Part_time_job_orders\YOLO\YOLOv11\ultralytics\cfg\datasets\VOC_my.yaml',
                          epochs=300,
                          imgsz=640,
                          batch=64,
                          # cache = False,
                          # single_cls = False,  # 是否是单类别检测
                          # workers = 0,
                          # resume=r'D:/model/yolov8/runs/detect/train/weights/last.pt',
                          amp = True
                          )
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值