文章目录
压缩映射例子
完备性定义
如果距离空间 X X X中的任意柯西列都是收敛列,则称 X X X为完备的距离空间。
压缩映射的定义
设
(
X
,
d
)
(X,d)
(X,d)是距离空间,
T
:
X
→
X
T:X\rightarrow X
T:X→X,若存在
θ
∈
(
0
,
1
)
\theta \in(0,1)
θ∈(0,1),使得
d
(
T
x
,
T
y
)
≤
θ
d
(
x
,
y
)
d(Tx,Ty)\leq \theta d(x,y)
d(Tx,Ty)≤θd(x,y)
对任意
x
,
y
∈
X
x,y\in X
x,y∈X都成立,则称
T
T
T为
X
X
X的压缩映射。
压缩映射原理:
设 X X X是完备距离空间, T : X → X T:X\rightarrow X T:X→X是压缩映射,则 T T T有唯一的不动点,即存在唯一 x ‾ ∈ X \overline{x}\in X x∈X,
使得 T x ‾ = x ‾ T\overline{x}=\overline{x} Tx=x.
压缩映射的性质
命题:距离空间的压缩映射必为连续映射。
隐函数存在定理(张恭庆P7):
设 D = { ( x , y ) ∣ a ≤ x ≤ b , − ∞ ≤ y ≤ + ∞ } , F ( x , y ) 在 D 上连续且 m ≤ F y ( x , y ) ≤ M , 设D=\{(x,y)|a\leq x\leq b,-\infty\leq y \leq+\infty\}, F(x,y)在D上连续且m\leq F_y(x,y)\leq M, 设D={(x,y)∣a≤x≤b,−∞≤y≤+∞},F(x,y)在D上连续且m≤Fy(x,y)≤M,
其中 0 ≤ m ≤ M , ( x , y ) ∈ D . 其中0\leq m\leq M,(x,y)\in D. 其中0≤m≤M,(x,y)∈D.
则存在唯一的连续函数 y = φ ( X ) . s t F ( x , φ ( X ) ) ≡ 0 , x ∈ [ a , b ] . 则存在唯一的连续函数y=\varphi(X).st F(x,\varphi(X)) \equiv0,x\in[a,b]. 则存在唯一的连续函数y=φ(X).stF(x,φ(X))≡0,x∈[a,b].
证明:
思路:建立映射证明其完备性和是压缩映射。
(1)确定距离空间,建立映射
在连续函数
C
[
a
,
b
]
C[a,b]
C[a,b]考虑映射:
(
T
φ
)
(
x
)
=
φ
(
x
)
−
1
M
F
(
x
,
φ
(
X
)
)
,
x
∈
[
a
,
b
]
.
(T\varphi)(x)=\varphi(x)-\frac{1}{M}F(x,\varphi(X)),x\in[a,b].
(Tφ)(x)=φ(x)−M1F(x,φ(X)),x∈[a,b].
则
T
T
T是
C
[
a
,
b
]
C[a,b]
C[a,b]到
C
[
a
,
b
]
C[a,b]
C[a,b]的映射。
(2)我们先证明连续函数空间 C [ a , b ] C[a,b] C[a,b]是完备的
设 x n {x_n} xn是 C [ a , b ] C[a,b] C[a,b]的任意柯西列,由柯西列定义:
任意
ε
>
0
\varepsilon>0
ε>0,存在
N
≥
0
N\geq 0
N≥0,当
n
,
m
≥
N
n,m\geq N
n,m≥N时,对任意
t
0
∈
[
a
,
b
]
t_0\in[a,b]
t0∈[a,b],
∣
x
n
(
t
0
)
−
x
m
(
t
0
)
∣
≤
d
(
x
n
,
x
m
)
<
ε
.
|x_n(t_0)-x_m(t_0)|\leq d(x_n,x_m)<\varepsilon.
∣xn(t0)−xm(t0)∣≤d(xn,xm)<ε.
固定
t
0
t_0
t0时,
{
x
n
(
t
0
)
}
\{x_n(t_0)\}
{xn(t0)}是
R
R
R的柯西列。
利用**
R
R
R的完备性**(极限不会出去),存在
x
(
t
0
)
∈
R
x(t_0)\in R
x(t0)∈R,
s
t
lim
x
→
∞
x
n
(
t
0
)
=
x
(
0
)
st\lim_{x\rightarrow\infty}x_n(t_0)=x(0)
stx→∞limxn(t0)=x(0)
在上面的不等式中,
令
m
→
∞
m\rightarrow\infty
m→∞,则当
n
≥
N
n\geq N
n≥N时,
∣
x
n
(
t
0
)
−
x
m
(
t
0
)
∣
≤
ε
|x_n(t_0)-x_m(t_0)|\leq \varepsilon
∣xn(t0)−xm(t0)∣≤ε
定义
x
=
x
(
t
)
x=x(t)
x=x(t),
t
0
∈
[
a
,
b
]
t_0\in[a,b]
t0∈[a,b],当
n
≥
N
n\geq N
n≥N时,
∣
x
n
(
t
0
)
−
x
(
t
0
)
∣
≤
ε
|x_n(t_0)-x(t_0)|\leq \varepsilon
∣xn(t0)−x(t0)∣≤ε
即柯西列收敛。
(3)验证 T T T为压缩映射
d ( T φ , T ψ ) ≤ ( 1 − m M ) d ( φ , ψ ) d(T\varphi,T\psi)\leq (1-\frac{m}{M})d(\varphi,\psi) d(Tφ,Tψ)≤(1−Mm)d(φ,ψ)
( T φ ) ( x ) = φ ( x ) − 1 M F ( x , φ ( X ) ) , x ∈ [ a , b ] (T\varphi)(x)=\varphi(x)-\frac{1}{M}F(x,\varphi(X)),x\in[a,b] (Tφ)(x)=φ(x)−M1F(x,φ(X)),x∈[a,b]
证:
d
(
T
φ
,
T
ψ
)
=
max
x
∈
[
a
,
b
]
∣
(
T
φ
)
(
x
)
−
(
T
ψ
)
(
x
)
∣
=
max
∣
φ
(
x
)
−
ψ
(
x
)
−
1
M
[
F
(
x
,
φ
(
x
)
)
−
F
(
x
,
ψ
(
x
)
)
]
∣
(
带入映射
)
=
max
∣
φ
(
x
)
−
ψ
(
x
)
−
1
M
F
y
(
x
,
θ
(
x
)
)
[
φ
(
x
)
−
ψ
(
x
)
]
∣
≤
(
1
−
m
M
)
max
x
∈
[
a
,
b
]
∣
φ
(
x
)
−
ψ
(
x
)
∣
=
≤
(
1
−
m
M
)
d
(
φ
,
ψ
)
.
d(T\varphi,T\psi)=\max_{x\in [a,b]}|(T\varphi)(x)-(T\psi)(x)|\\ =\max\big|\varphi(x)-\psi(x)-\frac{1}{M}[F(x,\varphi(x))-F(x,\psi(x))]\big|(带入映射)\\ =\max\big|\varphi(x)-\psi(x)-\frac{1}{M}F_y(x,\theta(x))[\varphi(x)-\psi(x)]\big|\\ \leq (1-\frac{m}{M})\max_{x\in [a,b]}|\varphi(x)-\psi(x)|\\ =\leq (1-\frac{m}{M})d(\varphi,\psi).
d(Tφ,Tψ)=x∈[a,b]max∣(Tφ)(x)−(Tψ)(x)∣=max
φ(x)−ψ(x)−M1[F(x,φ(x))−F(x,ψ(x))]
(带入映射)=max
φ(x)−ψ(x)−M1Fy(x,θ(x))[φ(x)−ψ(x)]
≤(1−Mm)x∈[a,b]max∣φ(x)−ψ(x)∣=≤(1−Mm)d(φ,ψ).
由于 0 ≤ 1 − m M < 1 0\leq 1-\frac{m}{M}<1 0≤1−Mm<1,故 T T T是完备距离空间 C [ a , b ] C[a,b] C[a,b]上的压缩映射。
由压缩不动点定理知,存在唯一的 φ ∈ C [ a , b ] \varphi\in C[a,b] φ∈C[a,b],使得 F ( x , φ ( x ) ) ≡ 0 F(x,\varphi(x))\equiv0 F(x,φ(x))≡0.
多元隐函数存在定理可参考张恭庆泛函分析第七页