压缩映射实例——隐函数存在定理

压缩映射例子

完备性定义

如果距离空间 X X X中的任意柯西列都是收敛列,则称 X X X为完备的距离空间。

压缩映射的定义

( X , d ) (X,d) (X,d)是距离空间, T : X → X T:X\rightarrow X T:XX,若存在 θ ∈ ( 0 , 1 ) \theta \in(0,1) θ(0,1),使得
d ( T x , T y ) ≤ θ d ( x , y ) d(Tx,Ty)\leq \theta d(x,y) d(Tx,Ty)θd(x,y)
对任意 x , y ∈ X x,y\in X x,yX都成立,则称 T T T X X X的压缩映射。

压缩映射原理:

X X X完备距离空间, T : X → X T:X\rightarrow X T:XX压缩映射,则 T T T有唯一的不动点,即存在唯一 x ‾ ∈ X \overline{x}\in X xX,

使得 T x ‾ = x ‾ T\overline{x}=\overline{x} Tx=x.

压缩映射的性质

命题:距离空间的压缩映射必为连续映射。

隐函数存在定理(张恭庆P7):

设 D = { ( x , y ) ∣ a ≤ x ≤ b , − ∞ ≤ y ≤ + ∞ } , F ( x , y ) 在 D 上连续且 m ≤ F y ( x , y ) ≤ M , 设D=\{(x,y)|a\leq x\leq b,-\infty\leq y \leq+\infty\}, F(x,y)在D上连续且m\leq F_y(x,y)\leq M, D={(x,y)axb,y+},F(x,y)D上连续且mFy(x,y)M,

其中 0 ≤ m ≤ M , ( x , y ) ∈ D . 其中0\leq m\leq M,(x,y)\in D. 其中0mM,(x,y)D.

则存在唯一的连续函数 y = φ ( X ) . s t F ( x , φ ( X ) ) ≡ 0 , x ∈ [ a , b ] . 则存在唯一的连续函数y=\varphi(X).st F(x,\varphi(X)) \equiv0,x\in[a,b]. 则存在唯一的连续函数y=φ(X).stF(x,φ(X))0,x[a,b].

证明:

思路:建立映射证明其完备性和是压缩映射。

(1)确定距离空间,建立映射

在连续函数 C [ a , b ] C[a,b] C[a,b]考虑映射:
( T φ ) ( x ) = φ ( x ) − 1 M F ( x , φ ( X ) ) , x ∈ [ a , b ] . (T\varphi)(x)=\varphi(x)-\frac{1}{M}F(x,\varphi(X)),x\in[a,b]. ()(x)=φ(x)M1F(x,φ(X)),x[a,b].
T T T C [ a , b ] C[a,b] C[a,b] C [ a , b ] C[a,b] C[a,b]的映射。

(2)我们先证明连续函数空间 C [ a , b ] C[a,b] C[a,b]是完备的

x n {x_n} xn C [ a , b ] C[a,b] C[a,b]的任意柯西列,由柯西列定义:

任意 ε > 0 \varepsilon>0 ε>0,存在 N ≥ 0 N\geq 0 N0,当 n , m ≥ N n,m\geq N n,mN时,对任意 t 0 ∈ [ a , b ] t_0\in[a,b] t0[a,b],
∣ x n ( t 0 ) − x m ( t 0 ) ∣ ≤ d ( x n , x m ) < ε . |x_n(t_0)-x_m(t_0)|\leq d(x_n,x_m)<\varepsilon. xn(t0)xm(t0)d(xn,xm)<ε.
固定 t 0 t_0 t0时, { x n ( t 0 ) } \{x_n(t_0)\} {xn(t0)} R R R的柯西列。

利用** R R R的完备性**(极限不会出去),存在 x ( t 0 ) ∈ R x(t_0)\in R x(t0)R
s t lim ⁡ x → ∞ x n ( t 0 ) = x ( 0 ) st\lim_{x\rightarrow\infty}x_n(t_0)=x(0) stxlimxn(t0)=x(0)
在上面的不等式中,

​ 令 m → ∞ m\rightarrow\infty m,则当 n ≥ N n\geq N nN时,
∣ x n ( t 0 ) − x m ( t 0 ) ∣ ≤ ε |x_n(t_0)-x_m(t_0)|\leq \varepsilon xn(t0)xm(t0)ε

定义 x = x ( t ) x=x(t) x=x(t), t 0 ∈ [ a , b ] t_0\in[a,b] t0[a,b],当 n ≥ N n\geq N nN时,
∣ x n ( t 0 ) − x ( t 0 ) ∣ ≤ ε |x_n(t_0)-x(t_0)|\leq \varepsilon xn(t0)x(t0)ε
即柯西列收敛。

(3)验证 T T T为压缩映射

d ( T φ , T ψ ) ≤ ( 1 − m M ) d ( φ , ψ ) d(T\varphi,T\psi)\leq (1-\frac{m}{M})d(\varphi,\psi) d(,Tψ)(1Mm)d(φ,ψ)

( T φ ) ( x ) = φ ( x ) − 1 M F ( x , φ ( X ) ) , x ∈ [ a , b ] (T\varphi)(x)=\varphi(x)-\frac{1}{M}F(x,\varphi(X)),x\in[a,b] ()(x)=φ(x)M1F(x,φ(X)),x[a,b]

证:
d ( T φ , T ψ ) = max ⁡ x ∈ [ a , b ] ∣ ( T φ ) ( x ) − ( T ψ ) ( x ) ∣ = max ⁡ ∣ φ ( x ) − ψ ( x ) − 1 M [ F ( x , φ ( x ) ) − F ( x , ψ ( x ) ) ] ∣ ( 带入映射 ) = max ⁡ ∣ φ ( x ) − ψ ( x ) − 1 M F y ( x , θ ( x ) ) [ φ ( x ) − ψ ( x ) ] ∣ ≤ ( 1 − m M ) max ⁡ x ∈ [ a , b ] ∣ φ ( x ) − ψ ( x ) ∣ = ≤ ( 1 − m M ) d ( φ , ψ ) . d(T\varphi,T\psi)=\max_{x\in [a,b]}|(T\varphi)(x)-(T\psi)(x)|\\ =\max\big|\varphi(x)-\psi(x)-\frac{1}{M}[F(x,\varphi(x))-F(x,\psi(x))]\big|(带入映射)\\ =\max\big|\varphi(x)-\psi(x)-\frac{1}{M}F_y(x,\theta(x))[\varphi(x)-\psi(x)]\big|\\ \leq (1-\frac{m}{M})\max_{x\in [a,b]}|\varphi(x)-\psi(x)|\\ =\leq (1-\frac{m}{M})d(\varphi,\psi). d(,Tψ)=x[a,b]max()(x)(Tψ)(x)=max φ(x)ψ(x)M1[F(x,φ(x))F(x,ψ(x))] (带入映射)=max φ(x)ψ(x)M1Fy(x,θ(x))[φ(x)ψ(x)] (1Mm)x[a,b]maxφ(x)ψ(x)=≤(1Mm)d(φ,ψ).

由于 0 ≤ 1 − m M < 1 0\leq 1-\frac{m}{M}<1 01Mm<1,故 T T T是完备距离空间 C [ a , b ] C[a,b] C[a,b]上的压缩映射。

由压缩不动点定理知,存在唯一的 φ ∈ C [ a , b ] \varphi\in C[a,b] φC[a,b],使得 F ( x , φ ( x ) ) ≡ 0 F(x,\varphi(x))\equiv0 F(x,φ(x))0.

多元隐函数存在定理可参考张恭庆泛函分析第七页

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值