matlab编写Newton插值多项式

定义:
在这里插入图片描述
即:
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

clear
x = [1, 2, 3, 4];  % x坐标
y = [2, 1, 4, 3];  % y坐标
% 定义目标插值点
xi = 2.5;
    % x: 已知数据点的x坐标
    % y: 已知数据点的y坐标
    % xi: 插值点,可以是一个数或一个向量
    n = length(x);
    % 初始化差商矩阵
    F = zeros(n, n);
    F(:,1) = y';  % 第一列是y值

    % 计算差商
    for j = 2:n
        for i = 1:n-j+1
            F(i,j) = (F(i+1,j-1) - F(i,j-1)) / (x(i+j-1) - x(i));
        end
    end
%F(i,j)为上三角矩阵,系数为F(1,i)。
    % 计算插值多项式的值
    P = zeros(size(xi));
    for k = 1:length(xi)
        p_val = F(1,1);  % 初始化P(xi)
        product_term = 1;
        for i = 2:n
            product_term = product_term * (xi(k) - x(i-1));%w_n(x)
            p_val = p_val + product_term * F(1,i);%系数
        end
        P(k) = p_val;  % 插值结果
    end
disp(['插值结果:', num2str(P)]);
### Matlab 实现 Newton 插值Newton 插值法是一种基于差商表构建插值多项式的数值方法,其核心在于利用节点间的差商来逐步构造插值多项式[^2]。以下是实现该算法的具体方式以及代码示例。 #### 差商的概念 差商是 Newton 插值法的核心概念之一。对于一组数据点 \((x_0, y_0), (x_1, y_1), ..., (x_n, y_n)\),定义 \(k\) 阶差商为: \[ f[x_i, x_{i+1}, ..., x_{i+k}] = \frac{f[x_{i+1}, x_{i+2}, ..., x_{i+k}] - f[x_i, x_{i+1}, ..., x_{i+k-1}]}{x_{i+k} - x_i} \] 其中,\(f[x_i]\) 即为对应的函数值 \(y_i\)[^3]。 #### MATLAB 代码实现 下面是一个完整的 MATLAB 程序,用于实现 Newton 插值法并计算指定点处的插值结果。 ```matlab function [p, c] = newton_interpolation(x, y, xi) % NEWTON_INTERPOLATION 使用牛顿插值法进行插值 % 输入参数: % x: 数据点横坐标向量 % y: 数据点纵坐标向量 % xi: 要计算的目标点 % 输出参数: % p: 目标点xi处的插值结果 % c: 构造得到的插值系数 n = length(x); c = zeros(1, n); % 初始化插值系数数组 c(1) = y(1); % 计算差商表 for j = 2:n for i = n:-1:j y(i) = (y(i) - y(i-1)) / (x(i) - x(i-j+1)); end c(j) = y(j); end % 构建插值多项式并计算目标点的结果 p = c(n); for k = n-1:-1:1 p = c(k) + (xi - x(k)) * p; end end ``` 上述代码实现了两个主要功能:一是通过嵌套循环计算差商表;二是利用 Horner 方法高效地评估插值多项式在任意点上的值[^4]。 #### 示例应用 假设我们有以下数据点,并希望使用 Newton 插值法估计 \(x=2.5\) 处的函数值。 | \(x\) | 1 | 2 | 3 | |-------|-------|--------|---------| | \(y\) | 0.841 | 0.9093 | 0.1411 | 可以按照如下方式进行调用: ```matlab x = [1, 2, 3]; y = [0.841, 0.9093, 0.1411]; xi = 2.5; [p, c] = newton_interpolation(x, y, xi); disp(['插值结果:', num2str(p)]); disp('插值系数:'); disp(c); ``` 运行此脚本后,将会输出对应于 \(x=2.5\) 的插值结果以及所使用的插值系数。 --- #### 总结 Newton 插值法因其灵活性和效率,在实际工程问题中有广泛应用价值。通过合理设计程序结构,能够有效减少冗余运算,提高执行速度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值