交叉熵函数是处理分类问题中常用的一种损失函数,其具体公式为:
1.交叉熵的值越小,说明两个分布越相似,预测结果越接近真实结果。
2.交叉熵经常搭配softmax使用,将输出的结果进行处理,使其多个分类的预测值和为1,再通过交叉熵来计算损失。
3.交叉熵能够衡量同一个随机变量中的两个不同概率分布的差异程度,在机器学习中就表示为真实概率分布与预测概率分布之间的差异。
为什么使用对数计算?
交叉熵是信息论中的一个重要概念,主要用于度量两个概率分布间的差异性。信息量的三个性质:
1.事件发生的概率越低,信息量越大;
2.事件发生的概率越高,信息量越低;
3.多个事件同时发生的概率是多个事件概率相乘,总信息量是多个事件信息量相加。
根据这三条性质可以知道使用对数形式可以满足性质需求。