Concave function

In mathematics, a concave function is the negative of a convex function. A concave function is also synonymously called concave downwards, concave down, convex upwards, convex cap, or upper convex.

1 Definition


A real-valued functions f f f on an interval (or, more generally, a convex set in vector space) is said to be concave if, for any x x x and y y y in the interval and for any α ∈ [ 0 , 1 ] α ∈ [ 0 , 1 ] {\displaystyle \alpha \in [0,1]}\alpha \in [0,1] α[0,1]α[0,1],
f ( ( 1 − α ) x + α y ) ≥ ( 1 − α ) f ( x ) + α f ( y ) {\displaystyle f((1-\alpha )x+\alpha y)\geq (1-\alpha )f(x)+\alpha f(y)} f((1α)x+αy)(1α)f(x)+αf(y)

A function is called strictly concave if
f ( ( 1 − α ) x + α y ) > ( 1 − α ) f ( x ) + α f ( y )   {\displaystyle f((1-\alpha )x+\alpha y)>(1-\alpha )f(x)+\alpha f(y)\,} f((1α)x+αy)>(1α)f(x)+αf(y)
for any α ∈ ( 0 , 1 ) \alpha \in (0,1) α(0,1), and x ≠ y x \neq y x=y.

For a function f : R → R {\displaystyle f:\mathbb {R} \to \mathbb {R} } f:RR, this second definition merely states that for every z z z strictly between x , y x, y x,y, the point ( z , f ( z ) ) (z, f(z)) (z,f(z)) on the graph of f f f is above the straight line joining the points ( x , f ( x ) ) (x, f(x)) (x,f(x)) and ( y , f ( y ) ) (y, f(y)) (y,f(y)).

A function f f f is quasiconcave if the upper contour sets of the function S ( a ) = { x : f ( x ) ≥ a } S(a)=\{x:f(x)\geq a\} S(a)={x:f(x)a} are convex sets.

2 Properties


2.1 Functions of a single variable


  1. A differentiable function f f f if (strictly) concave on an interval if and only if its derivative function f ′ f ′ f is (strictly) monotonically decreasing on that interval, that is, a concave function has a non-increasing (decreasing) slope.

  2. Points where concavity changes (between concave and convex) are inflection points.

  3. If f f f is twice-differentiable, then f f f is concave if and only if f ′′ f ′′ f′′ is non-positive (or, informally, if the “acceleration” is non-positive). If its second derivative is negative then it is strictly concave, but the converse is not true, as shown by f ( x ) = − x 4 f(x) = -x^4 f(x)=x4.

  4. If f f f is concave and differentiable, then it is bounded above by its first-order Taylor approximation:
    f ( y ) ≤ f ( x ) + f ′ ( x ) [ y − x ] {\displaystyle f(y)\leq f(x)+f'(x)[y-x]} f(y)f(x)+f(x)[yx]

  5. A Lebesgue measurable function on an interval C C C in concave if and only if it is midpoint concave, that is, for any x x x and y y y in C C C
    f ( x + y 2 ) ≥ f ( x ) + f ( y ) 2 {\displaystyle f\left({\frac {x+y}{2}}\right)\geq {\frac {f(x)+f(y)}{2}}} f(2x+y)2f(x)+f(y)

  6. If a function f f f is concave, and f ( x ) ≥ 0 f(x) \geq 0 f(x)0, then f f f is subadditive on [ 0 , ∞ ) [0, \infty) [0,). Proof:

    • Since f f f is concave and 1 ≥ t ≥ 0 1 \geq t \geq 0 1t0, letting y = 0 y = 0 y=0 we have:
      f ( t x ) = f ( t x + ( 1 − t ) ⋅ 0 ) ≥ t f ( x ) + ( 1 − t ) f ( 0 ) ≥ t f ( x ) . {\displaystyle f(tx)=f(tx+(1-t)\cdot 0)\geq tf(x)+(1-t)f(0)\geq tf(x).} f(tx)=f(tx+(1t)0)tf(x)+(1t)f(0)tf(x).
    • For a , b ∈ [ 0 , ∞ ) a, b \in [0, \infty) a,b[0,):
      f ( a ) + f ( b ) = f ( ( a + b ) a a + b ) + f ( ( a + b ) b a + b ) ≥ a a + b f ( a + b ) + b a + b f ( a + b ) = f ( a + b ) {\displaystyle f(a)+f(b)=f\left((a+b){\frac {a}{a+b}}\right)+f\left((a+b){\frac {b}{a+b}}\right)\geq {\frac {a}{a+b}}f(a+b)+{\frac {b}{a+b}}f(a+b)=f(a+b)} f(a)+f(b)=f((a+b)a+ba)+f((a+b)a+bb)a+baf(a+b)+a+bbf(a+b)=f(a+b)

2.2 Functions of n variables


3 Examples


4 Applications

5 See also


6 References


7 Further References

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值