In mathematics, a concave function is the negative of a convex function. A concave function is also synonymously called concave downwards, concave down, convex upwards, convex cap, or upper convex.
Contents
1 Definition
A real-valued functions
f
f
f on an interval (or, more generally, a convex set in vector space) is said to be concave if, for any
x
x
x and
y
y
y in the interval and for any
α
∈
[
0
,
1
]
α
∈
[
0
,
1
]
{\displaystyle \alpha \in [0,1]}\alpha \in [0,1]
α∈[0,1]α∈[0,1],
f
(
(
1
−
α
)
x
+
α
y
)
≥
(
1
−
α
)
f
(
x
)
+
α
f
(
y
)
{\displaystyle f((1-\alpha )x+\alpha y)\geq (1-\alpha )f(x)+\alpha f(y)}
f((1−α)x+αy)≥(1−α)f(x)+αf(y)
A function is called strictly concave if
f
(
(
1
−
α
)
x
+
α
y
)
>
(
1
−
α
)
f
(
x
)
+
α
f
(
y
)
{\displaystyle f((1-\alpha )x+\alpha y)>(1-\alpha )f(x)+\alpha f(y)\,}
f((1−α)x+αy)>(1−α)f(x)+αf(y)
for any
α
∈
(
0
,
1
)
\alpha \in (0,1)
α∈(0,1), and
x
≠
y
x \neq y
x=y.
For a function f : R → R {\displaystyle f:\mathbb {R} \to \mathbb {R} } f:R→R, this second definition merely states that for every z z z strictly between x , y x, y x,y, the point ( z , f ( z ) ) (z, f(z)) (z,f(z)) on the graph of f f f is above the straight line joining the points ( x , f ( x ) ) (x, f(x)) (x,f(x)) and ( y , f ( y ) ) (y, f(y)) (y,f(y)).
A function f f f is quasiconcave if the upper contour sets of the function S ( a ) = { x : f ( x ) ≥ a } S(a)=\{x:f(x)\geq a\} S(a)={x:f(x)≥a} are convex sets.
2 Properties
2.1 Functions of a single variable
-
A differentiable function f f f if (strictly) concave on an interval if and only if its derivative function f ′ f ′ f′ is (strictly) monotonically decreasing on that interval, that is, a concave function has a non-increasing (decreasing) slope.
-
Points where concavity changes (between concave and convex) are inflection points.
-
If f f f is twice-differentiable, then f f f is concave if and only if f ′′ f ′′ f′′ is non-positive (or, informally, if the “acceleration” is non-positive). If its second derivative is negative then it is strictly concave, but the converse is not true, as shown by f ( x ) = − x 4 f(x) = -x^4 f(x)=−x4.
-
If f f f is concave and differentiable, then it is bounded above by its first-order Taylor approximation:
f ( y ) ≤ f ( x ) + f ′ ( x ) [ y − x ] {\displaystyle f(y)\leq f(x)+f'(x)[y-x]} f(y)≤f(x)+f′(x)[y−x] -
A Lebesgue measurable function on an interval C C C in concave if and only if it is midpoint concave, that is, for any x x x and y y y in C C C
f ( x + y 2 ) ≥ f ( x ) + f ( y ) 2 {\displaystyle f\left({\frac {x+y}{2}}\right)\geq {\frac {f(x)+f(y)}{2}}} f(2x+y)≥2f(x)+f(y) -
If a function f f f is concave, and f ( x ) ≥ 0 f(x) \geq 0 f(x)≥0, then f f f is subadditive on [ 0 , ∞ ) [0, \infty) [0,∞). Proof:
- Since
f
f
f is concave and
1
≥
t
≥
0
1 \geq t \geq 0
1≥t≥0, letting
y
=
0
y = 0
y=0 we have:
f ( t x ) = f ( t x + ( 1 − t ) ⋅ 0 ) ≥ t f ( x ) + ( 1 − t ) f ( 0 ) ≥ t f ( x ) . {\displaystyle f(tx)=f(tx+(1-t)\cdot 0)\geq tf(x)+(1-t)f(0)\geq tf(x).} f(tx)=f(tx+(1−t)⋅0)≥tf(x)+(1−t)f(0)≥tf(x). - For
a
,
b
∈
[
0
,
∞
)
a, b \in [0, \infty)
a,b∈[0,∞):
f ( a ) + f ( b ) = f ( ( a + b ) a a + b ) + f ( ( a + b ) b a + b ) ≥ a a + b f ( a + b ) + b a + b f ( a + b ) = f ( a + b ) {\displaystyle f(a)+f(b)=f\left((a+b){\frac {a}{a+b}}\right)+f\left((a+b){\frac {b}{a+b}}\right)\geq {\frac {a}{a+b}}f(a+b)+{\frac {b}{a+b}}f(a+b)=f(a+b)} f(a)+f(b)=f((a+b)a+ba)+f((a+b)a+bb)≥a+baf(a+b)+a+bbf(a+b)=f(a+b)
- Since
f
f
f is concave and
1
≥
t
≥
0
1 \geq t \geq 0
1≥t≥0, letting
y
=
0
y = 0
y=0 we have:
2.2 Functions of n variables
3 Examples
4 Applications
–