Hyperbolic functions

In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points (cos t, sin t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the unit hyperbola. Also, similarly to how the derivatives of sin(t) and cos(t) are cos(t) and –sin(t) respectively, the derivatives of sinh(t) and cosh(t) are cosh(t) and +sinh(t) respectively.

Hyperbolic functions occur in the calculations of angles and distances in hyperbolic geometry. They also occur in the solutions of many linear differential equations (such as the equation defining a catenary), cubic equations, and Laplace’s equation in Cartesian coordinates. Laplace’s equations are important in many areas of physics, including electromagnetic theory, heat transfer, fluid dynamics, and special relativity.

The basic hyperbolic functions are:[1]

hyperbolic sine “sinh” (/ˈsɪŋ, ˈsɪntʃ, ˈʃaɪn/),[2]
hyperbolic cosine “cosh” (/ˈkɒʃ, ˈkoʊʃ/),[3]
from which are derived:[4]

hyperbolic tangent “tanh” (/ˈtæŋ, ˈtæntʃ, ˈθæn/),[5]
hyperbolic cosecant “csch” or “cosech” (/ˈkoʊsɛtʃ, ˈkoʊʃɛk/[3])
hyperbolic secant “sech” (/ˈsɛtʃ, ˈʃɛk/),[6]
hyperbolic cotangent “coth” (/ˈkɒθ, ˈkoʊθ/),[7][8]
corresponding to the derived trigonometric functions.

The inverse hyperbolic functions are:

area hyperbolic sine “arsinh” (also denoted “sinh−1”, “asinh” or sometimes “arcsinh”)[9][10][11]
area hyperbolic cosine “arcosh” (also denoted “cosh−1”, “acosh” or sometimes “arccosh”)
and so on.

The hyperbolic functions take a real argument called a hyperbolic angle. The size of a hyperbolic angle is twice the area of its hyperbolic sector. The hyperbolic functions may be defined in terms of the legs of a right triangle covering this sector.

In complex analysis, the hyperbolic functions arise when applying the ordinary sine and cosine functions to an imaginary angle. The hyperbolic sine and the hyperbolic cosine are entire functions. As a result, the other hyperbolic functions are meromorphic in the whole complex plane.

By Lindemann–Weierstrass theorem, the hyperbolic functions have a transcendental value for every non-zero algebraic value of the argument.[12]

Hyperbolic functions were introduced in the 1760s independently by Vincenzo Riccati and Johann Heinrich Lambert.[13] Riccati used Sc. and Cc. (sinus/cosinus circulare) to refer to circular functions and Sh. and Ch. (sinus/cosinus hyperbolico) to refer to hyperbolic functions. Lambert adopted the names, but altered the abbreviations to those used today.[14] The abbreviations sh, ch, th, cth are also currently used, depending on personal preference.

在这里插入图片描述
在这里插入图片描述

A ray through the unit hyperbola x2 − y2 = 1 at the point (cosh a, sinh a), where a is twice the area between the ray, the hyperbola, and the x-axis. For points on the hyperbola below the x-axis, the area is considered negative (see animated version with comparison with the trigonometric (circular) functions).

1 Notation

Main article: Trigonometric functions § Notation

2 Definitions

2.1 Exponential definitions

2.2 Differential equation definitions

2.3 Complex trigonometric definitions

3 Characterizing properties

3.1 Hyperbolic cosine

3.2 Hyperbolic tangent

4 Useful relations

4.1 Sums of arguments

4.2 Subtraction formulas

4.3 Half argument formulas

4.4 Square formulas

4.5 Inequalities

5 Inverse functions as logarithms

6 Derivatives

7 Second derivatives

8 Standard integrals

9 Taylor series expressions

10 Infinite products and continued fractions

11 Comparison with circular functions

12 Relationship to the exponential function

13 Hyperbolic functions for complex numbers

14 See also

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值