In differential calculus, there is no single uniform notation for differentiation. Instead, various notations for the derivative of a function or variable have been proposed by various mathematicians. The usefulness of each notation varies with the context, and it is sometimes advantageous to use more than one notation in a given context. The most common notations for differentiation (and its opposite operation, the antidifferentiation or indefinite integration) are listed below.
Contents
1 Leibniz’s notation
1.1 Leibniz’s notation for antidifferentiation
2 Lagrange’s notation
2.1 Lagrange’s notation for antidifferentiation
3 Euler’s notation
3.1 Euler’s notation for antidifferentiation
4 Newton’s notation
4.1 Newton’s notation for integration
5 Partial derivatives
6 Notation in vector calculus
7 See also