漫步数学分析十九——介值定理

介值定理说明对于某区间上的连续函数,给定两个值后,可以取得两个值中间的所有值,如图1,图2中的不连续函数 f 不会取值1/2。简单来说,该定理告诉我们不连续函数可以从一个值调到另一个值,而连续函数必须通过所有中间值。


这里写图片描述
图1

介值定理不成立的另一方方式是定义域 A 是不连通的,如图3所示。

因此关键的假设是f是连续函数并且 f 定义在连通区域上。我们随后会看到定理6的证明非常简单,因为我们已经形式化了连集的概念。


这里写图片描述
图2

6 ARn,f:AR 是连续的,假设 KA 是连集并且 x,yK 。对于每个数 cR 满足 f(x)cf(y) ,存在一个点 zK 使得 f(z)=c

因为区间(开或闭)是连集,所以介值定理就变成了定理6的特殊情况。然而,注意到定理6更加一般的情况。例如,将其应用到定义在整个 Rn 上(这是一个连集)的多变量实值函数 f(x1,,xn)

1 利用 f(K) 是连集这个事实,证明定理6。

有定理2知道 f(K) 是连集,因此 f(K) 是一个区间,可能是无线的。但是如果 f(x),f(y)f(K) ,那么 [f(x),f(y)]f(K) ,因为 f(K) 是一个区间。所以如果 c 与定理6中一样,那么c[f(x),f(y)],所以 cf(K) ,所以存在 z 满足c=f(z)。这是证明定理6的一种方法,另外一种方法会在后面给出。


这里写图片描述
图3

2 f(x) 是三次多项式,说明 f 有一个(实)根x0(即, f(x0)=0 )。

f(x)=ax3+bx2+cx+d ,其中 a0 。 假设 a>0 ,对于 x>0 ,当 x 变大时,ax3也在变大并且比其他项都大,所以如果 x>0 x 较大时,f(x)>0。同样地,如果 x 较大且为负,那么f(x)<0,因此应用介值定理可得存在点 x0 使得 f(x0)=0

3 f:[1,2][0,3] 是连续函数,且 f(1)=0,f(2)=3 。说明 f 有一个定点,即存在一个点x0[1,2]使得 f(x0)=x0

g(x)=f(x)x ,那么 g 是连续的,g(1)=f(1)1=1,g(2)=f(2)2=32=1,因此利用介值定理, g 肯定在某点x0[1,2]处等于零,这个 x0 就是 f(x) 的定点。

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值