✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
摘要
随着社会经济的快速发展,电力需求预测变得越来越重要。准确预测用电需求,可以有效地提高电力系统的运行效率,降低能源消耗,保障电力供应安全。本文提出了一种基于黏菌优化算法(SMA)的卷积神经网络 (CNN)、门控循环神经网络 (GRU) 和注意力机制相结合的用电需求预测模型 (SMA-CNN-GRU-Attention),并使用Matlab进行了实现。该模型利用CNN提取电力需求数据的空间特征,GRU提取时间特征,注意力机制关注关键时间段的影响,SMA算法优化模型参数,最终实现对未来用电需求的准确预测。通过对实际电力需求数据的实验验证,结果表明SMA-CNN-GRU-Attention模型相比其他传统方法具有更高的预测精度,展现出较好的实用价值。
关键词:用电需求预测;黏菌优化算法;卷积神经网络;门控循环神经网络;注意力机制;Matlab
1. 引言
用电需求预测是电力系统规划、调度和运行的关键环节,其准确性直接影响电力系统的安全稳定运行。近年来,随着电力市场化改革的不断深化,电力需求预测变得更加重要,对其精度要求也越来越高。传统方法,例如ARIMA模型、支持向量机等,在处理非线性、复杂时间序列数据方面存在局限性。近年来,深度学习技术在电力需求预测领域得到广泛应用,取得了显著成果。
2. 相关研究
近年来,深度学习模型在电力需求预测中取得了显著进展。例如,文献[1]利用CNN提取电力需求数据的空间特征,文献[2]利用RNN提取时间特征,文献[3]利用注意力机制关注关键时间段的影响。然而,现有方法在模型参数优化方面仍存在不足,导致预测精度难以进一步提高。
3. SMA-CNN-GRU-Attention模型
本文提出一种基于SMA的CNN-GRU-Attention模型,用于电力需求预测。该模型由以下几部分组成:
3.1 CNN层
CNN层用于提取电力需求数据的空间特征,例如不同时间段之间的相关性。本文采用多层卷积网络,并使用ReLU函数作为激活函数。
3.2 GRU层
GRU层用于提取电力需求数据的时序特征,例如历史数据的趋势和周期性。本文采用多层GRU网络,并使用sigmoid函数作为激活函数。
3.3 注意力机制
注意力机制用于关注关键时间段的影响,例如节假日、周末等。本文采用自注意力机制,通过计算不同时间段之间的相关性来确定权重,并对GRU输出结果进行加权。
3.4 SMA优化
SMA算法是一种新型的元启发式优化算法,具有较强的全局搜索能力和局部搜索能力,适合优化神经网络模型的参数。本文使用SMA算法对CNN-GRU-Attention模型的参数进行优化,以提高模型的预测精度。
4. Matlab实现
本文使用Matlab对SMA-CNN-GRU-Attention模型进行了实现。具体步骤如下:
4.1 数据预处理
对历史电力需求数据进行预处理,包括数据清洗、数据归一化等操作。
4.2 模型构建
根据模型结构搭建CNN、GRU、注意力机制和SMA算法模块。
4.3 模型训练
使用训练数据对模型进行训练,并使用交叉验证方法评估模型的性能。
4.4 模型预测
使用训练好的模型对未来电力需求进行预测。
5. 实验结果与分析
本文使用某地区实际电力需求数据进行实验,并将SMA-CNN-GRU-Attention模型与其他传统方法进行比较。实验结果表明,SMA-CNN-GRU-Attention模型在预测精度方面明显优于其他方法,体现出该模型的优越性。
6. 结论
本文提出了一种基于SMA的CNN-GRU-Attention模型,用于电力需求预测。该模型利用CNN提取空间特征,GRU提取时间特征,注意力机制关注关键时间段的影响,SMA算法优化模型参数,最终实现对未来用电需求的准确预测。实验结果表明,SMA-CNN-GRU-Attention模型相比其他传统方法具有更高的预测精度,展现出较好的实用价值。未来,可以进一步研究如何提高模型的鲁棒性和泛化能力,将其应用于更多电力需求预测场景。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类