【多种优化算法比较】混沌引力搜索算法(CGSA)附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在现代科学与工程领域中,优化问题无处不在。从复杂的系统设计到机器学习模型的参数调整,从资源分配到路径规划,寻找最优解是提高效率、降低成本、增强性能的关键。随着问题规模和复杂度的不断提升,传统的解析方法往往难以应对,促使研究人员不断探索和发展各种智能优化算法。这些算法模仿自然界或物理现象,通过迭代搜索的方式逼近最优解,展现出强大的全局搜索能力和鲁棒性。然而,不同的优化算法具有各自的特点、优势和局限性,选择合适的算法对于解决特定问题至关重要。本文旨在对多种优化算法进行比较,并以混沌引力搜索算法(CGSA)为例,深入探讨其原理、特点以及与其他算法的对比优势。

优化算法概述与分类

优化算法通常可以分为以下几类:

  1. 传统优化算法:

     包括梯度下降法、牛顿法等。这类算法依赖于目标函数的导数信息,在函数光滑且凸的情况下能够快速收敛到局部最优解。然而,对于非凸函数,它们容易陷入局部最优,且对初始值敏感。

  2. 元启发式算法(Metaheuristics):

     这是一类受到自然或物理现象启发的算法,不依赖于目标函数的具体数学形式,具有较强的全局搜索能力,能够有效地跳出局部最优。常见的元启发式算法包括:

    • 基于群体智能的算法:

       模仿生物群体行为,如粒子群优化算法(PSO)、蚁群优化算法(ACO)、蜂群优化算法(ABC)。

    • 基于进化计算的算法:

       模仿生物进化过程,如遗传算法(GA)、差分进化算法(DE)。

    • 基于物理或化学过程的算法:

       模仿物理或化学现象,如模拟退火算法(SA)、引力搜索算法(GSA)。

    • 基于混沌理论的算法:

       利用混沌系统的遍历性和随机性进行搜索,如混沌优化算法(COA)。

  3. 混合优化算法:

     将不同算法的优点结合起来,以提高搜索性能。例如,将局部搜索算法与全局搜索算法相结合。

本文将重点关注元启发式算法,并以混沌引力搜索算法(CGSA)作为研究对象,与其他一些经典的元启发式算法进行比较。

引力搜索算法(GSA)原理

引力搜索算法(GSA)是由 Esmat Rashedi 等人于2009年提出的一种新型元启发式算法。其灵感来源于万有引力定律,将搜索空间中的每个候选解视为一个具有质量的物体。物体之间的引力使得它们相互吸引,质量较大的物体(对应较优的解)吸引质量较小的物体,从而引导搜索朝着高质量区域移动。

GSA 的核心思想可以概括为以下几个方面:

  1. 物体与解:

     搜索空间中的每一个候选解都被视为一个物体。

  2. 质量与适应度:

     物体的质量与该解的适应度(或目标函数值)成正比。质量越大,表示解越好。

  3. 引力与吸引:

     任意两个物体之间存在引力,引力大小与它们的质量乘积成正比,与它们之间的距离的平方成反比。引力引导质量较小的物体向质量较大的物体移动。

  4. 加速度与更新:

     每个物体在所有其他物体的引力作用下产生加速度,根据加速度更新物体的位置(即解)。

GSA 在处理连续优化问题方面表现出较好的性能,但与其他元启发式算法一样,它也存在一些局限性,例如容易陷入局部最优、收敛速度较慢等。

混沌理论在优化中的应用与混沌引力搜索算法(CGSA)

混沌理论研究的是确定性系统中发生的随机性行为,其核心特征包括对初始条件的敏感依赖性(蝴蝶效应)、遍历性和不可预测性。混沌系统虽然是确定性的,但其轨迹在一定范围内具有遍历性,可以探索整个状态空间。将混沌理论引入优化算法,可以利用混沌系统的这些特性来增强算法的搜索能力。

混沌化是利用混沌系统生成伪随机序列代替传统的随机数生成器,用于算法中的随机性部分,例如初始化种群、扰动参数等。通过混沌化,可以增加算法的遍历性,避免陷入局部最优,提高全局搜索能力。

**混沌引力搜索算法(CGSA)**是将混沌理论与引力搜索算法相结合的一种改进算法。CGSA 通常利用混沌序列来代替 GSA 中的随机性部分,例如:

  1. 混沌初始化:

     利用混沌映射生成初始种群的位置,以提高种群的多样性,避免聚集在某个区域。

  2. 混沌扰动:

     在物体位置更新过程中引入混沌扰动,帮助物体跳出局部最优。

CGSA 的核心在于利用混沌系统的遍历性和随机性来弥补传统 GSA 的不足,增强其全局搜索能力和跳出局部最优的能力。通过混沌化,CGSA 能够在更广阔的搜索空间中进行探索,从而找到更接近全局最优的解。

常见的混沌映射包括 Logistic 映射、Tent 映射、Singer 映射等。不同的混沌映射具有不同的混沌特性,选择合适的混沌映射对于 CGSA 的性能至关重要。

CGSA 与其他优化算法的比较

为了全面评估 CGSA 的性能,需要将其与其他经典的优化算法进行比较。这里我们选择几种具有代表性的元启发式算法进行对比:

  1. 粒子群优化算法(PSO):

     模仿鸟群觅食行为,通过个体最优位置和群体最优位置引导粒子更新速度和位置。PSO 具有实现简单、收敛速度快的优点,但在高维或复杂问题上容易陷入局部最优。

  2. 遗传算法(GA):

     模仿生物进化过程,通过选择、交叉和变异操作来生成新的种群。GA 具有较强的全局搜索能力,但计算量较大,且参数设置对性能影响较大。

  3. 差分进化算法(DE):

     也是一种基于进化的算法,通过差分向量对个体进行变异和交叉。DE 具有较好的鲁棒性和全局搜索能力,对参数不敏感,但收敛速度可能相对较慢。

  4. 标准引力搜索算法(GSA):

     作为 CGSA 的基础算法,用于对比混沌化对算法性能的提升效果。

在进行比较时,通常会使用一系列标准的测试函数,这些函数具有不同的特性,例如单峰、多峰、可分、不可分等,能够全面地评估算法的性能。评估指标包括:

  • 收敛精度:

     算法找到的最优解与真实最优解之间的差距。

  • 收敛速度:

     算法达到一定收敛精度所需的迭代次数或计算时间。

  • 鲁棒性:

     算法对不同问题、不同参数设置的稳定性。

  • 全局搜索能力:

     算法跳出局部最优、找到全局最优解的能力。

CGSA 相较于 GSA 的优势:

  • 增强的全局搜索能力:

     混沌初始化和混沌扰动有助于 CGSA 更全面地探索搜索空间,降低陷入局部最优的风险。

  • 更高的收敛精度:

     更好的全局搜索能力使得 CGSA 有更大的机会找到接近或达到全局最优的解。

  • 更好的鲁棒性:

     混沌化增加了算法的随机性和多样性,使其对初始值和参数设置的敏感性降低。

CGSA 与 PSO、GA、DE 等算法的比较:

  • 与 PSO 比较:

     CGSA 的全局搜索能力通常优于 PSO,尤其是在多峰问题上。PSO 容易过早收敛到局部最优。CGSA 的收敛速度可能与 PSO 相当或略慢。

  • 与 GA 比较:

     CGSA 的计算量通常小于 GA,且参数设置相对简单。GA 的全局搜索能力较强,但计算成本较高。在某些问题上,CGSA 的收敛精度可能优于 GA。

  • 与 DE 比较:

     CGSA 的搜索机制与 DE 不同,CGSA 基于引力,而 DE 基于差分。在某些问题上,CGSA 的性能可能优于 DE,反之亦然。具体性能取决于问题的特性。CGSA 的参数相对较少,调整相对容易。

需要指出的是,没有一种优化算法能够适用于所有问题。 算法的性能取决于问题的特性。对于不同的问题,可能需要选择不同的算法或对算法进行调整和改进。此外,算法的参数设置也会对性能产生重要影响。

CGSA 的局限性与未来研究方向

尽管 CGSA 相较于传统的 GSA 具有显著的优势,但它仍然存在一些局限性:

  • 混沌映射的选择和参数调整:

     不同的混沌映射具有不同的特性,选择合适的混沌映射以及调整其参数对于 CGSA 的性能至关重要,这需要一定的经验和实验。

  • 计算成本:

     虽然 CGSA 通常优于标准 GSA,但相对于一些非常简单的算法,其计算量可能略高。

  • 理论分析的挑战:

     对混沌系统的理论分析本身就具有挑战性,这使得对 CGSA 的收敛性、全局最优性等进行严格的理论证明较为困难。

未来的研究方向可以包括:

  • 新型混沌映射的应用:

     探索更有效的混沌映射,进一步增强 CGSA 的搜索能力。

  • 与其他算法的混合:

     将 CGSA 与其他具有互补优势的算法相结合,例如,将局部搜索算法与 CGSA 相结合,以提高收敛速度和精度。

  • 自适应参数调整:

     设计自适应机制,根据搜索过程的进展动态调整混沌映射的参数或引入扰动的强度,以提高算法的性能和鲁棒性。

  • 理论分析的深入:

     进一步研究 CGSA 的收敛性质、全局最优性等,为算法的设计和改进提供理论指导。

  • 在实际问题中的应用:

     将 CGSA 应用于更广泛的实际优化问题,验证其有效性。

结论

智能优化算法在解决复杂的优化问题中发挥着越来越重要的作用。引力搜索算法(GSA)作为一种基于物理现象的元启发式算法,具有独特的搜索机制。将混沌理论引入 GSA 形成的混沌引力搜索算法(CGSA)有效地增强了算法的全局搜索能力和鲁棒性,能够更好地跳出局部最优,找到更接近全局最优的解。通过与粒子群优化算法、遗传算法、差分进化算法等经典优化算法的比较,可以发现 CGSA 在处理一些复杂优化问题时具有明显的优势。

然而,每种算法都有其适用的范围和局限性。在实际应用中,需要根据问题的具体特性选择合适的算法,并对算法参数进行适当的调整。未来的研究将继续致力于改进 CGSA,例如探索更有效的混沌化方法、与其他算法的混合以及深入的理论分析,以进一步提升其性能,使其能够更好地应对日益复杂的优化挑战。随着智能优化算法的不断发展,我们有理由相信,它们将在解决未来科学与工程领域的各种优化问题中发挥越来越重要的作用。

⛳️ 运行结果

🔗 参考文献

[1] 姜然,姜建华.混沌图引力搜索算法求解压力容器约束问题[J].吉林大学学报:信息科学版, 2019, 37(6):6.DOI:CNKI:SUN:CCYD.0.2019-06-010.

[2] 罗萍.求解复杂函数优化问题的万有引力算法设计[D].广东工业大学,2015.

[3] 罗萍.求解复杂函数优化问题的万有引力算法设计[D].广东工业大学,2015.DOI:10.7666/d.Y2795618.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值