✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
路径跟踪是无人驾驶车辆研究中的关键技术之一,其性能直接影响着无人车的行驶安全性和乘坐舒适性。针对具有未知动力学模型且执行重复路径跟踪任务的非线性单输入单输出(SISO)离散时间系统无人车,本文提出了一种基于神经网络的数据驱动迭代学习控制(ILC)算法。该算法利用神经网络强大的非线性逼近能力,直接从车辆的输入输出数据中学习最优的控制输入序列,无需依赖精确的车辆动力学模型。通过在每个迭代周期内利用前一周期的误差信息修正当前的控制输入,算法能够逐步减小跟踪误差,最终实现对期望路径的高精度跟踪。理论分析表明,在适当的条件下,所提出的ILC算法具有收敛性。仿真实验结果验证了该算法的有效性和优越性,相较于传统的控制方法,在处理未知模型和重复任务场景下表现出更好的跟踪性能。
关键词: 无人车;路径跟踪;迭代学习控制;神经网络;数据驱动;未知模型;重复任务;单输入单输出;离散时间系统
引言
随着人工智能和自动化技术的飞速发展,无人驾驶车辆已成为未来交通系统的主要发展趋势之一。路径跟踪作为无人车控制系统的核心功能,其目标是使车辆能够精确地沿着预设或规划的路径行驶。传统的路径跟踪方法,如比例-积分-微分(PID)控制、模型预测控制(MPC)等,通常依赖于精确的车辆动力学模型。然而,无人车系统的动力学模型往往是复杂的、非线性的,且容易受到环境因素、载荷变化、轮胎磨损等不确定因素的影响,导致模型参数难以精确获取,甚至模型结构难以准确描述。模型失配会严重影响控制器的性能,甚至导致系统不稳定。
此外,许多无人车应用场景,如封闭园区内的物流运输、固定线路的公共交通、重复路径的巡检等,都属于重复任务。在这些场景下,车辆需要反复执行相同的路径跟踪任务。传统的控制方法在每次执行任务时都需要重新计算控制输入,无法有效地利用历史任务执行过程中积累的经验信息。迭代学习控制(ILC)是一种针对重复任务的控制方法,其核心思想是利用前一次任务执行过程中积累的误差信息来修正当前的控制输入,通过不断迭代学习,使得系统的输出在下一个任务执行周期内更接近期望轨迹。ILC无需精确的系统模型,能够直接从输入输出数据中学习控制律,非常适合处理具有未知模型和重复任务的系统。
目前,针对无人车路径跟踪问题,已有一些基于ILC的研究。然而,大多数现有研究主要集中在线性或近似线性系统,对于非线性强、模型未知且执行重复任务的无人车系统,直接应用传统的线性ILC方法往往效果不佳。近年来,随着机器学习技术的快速发展,神经网络以其强大的非线性逼近能力,为解决复杂非线性系统的控制问题提供了新的途径。将神经网络与ILC相结合,利用神经网络来逼近系统的逆动力学或直接学习迭代更新律,已成为一个重要的研究方向。
本文针对具有未知模型和重复任务的非线性SISO离散时间系统无人车的路径跟踪问题,提出了一种基于神经网络的数据驱动ILC算法。该算法无需事先建立精确的车辆动力学模型,直接利用车辆在重复路径跟踪任务中产生的输入输出数据训练神经网络。神经网络被用于学习一个合适的迭代更新律,使得在每次任务迭代中,车辆的实际路径能够逐渐逼近期望路径。所提出的算法将神经网络的数据驱动优势与ILC的迭代学习特性相结合,旨在提高无人车在复杂未知环境下的路径跟踪精度和鲁棒性。
问题描述
考虑一个具有未知动力学模型的非线性SISO离散时间系统无人车,其动力学可以描述为如下形式:
yk(t+1)=f(yk(t),uk(t),dk(t))
基于神经网络的数据驱动ILC算法
为了解决非线性SISO离散时间系统无人车路径跟踪中模型未知和重复任务的问题,本文提出了一种基于神经网络的数据驱动ILC算法。该算法的核心思想是利用神经网络来学习一个非线性的迭代更新律,以更好地适应非线性系统特性。具体的算法流程如下:
3.1 算法框架
3.2 神经网络结构与训练
具体地,我们可以采用一种离线和在线相结合的训练策略。在算法开始前,可以使用一些预先采集的车辆在类似路径上行驶的数据,或者通过一些初步的控制尝试来收集数据,对神经网络进行预训练。预训练的目标可以是学习一个近似的系统模型或逆模型。
3.3 算法流程
基于神经网络的数据驱动ILC算法的具体流程如下:
3.4 算法收敛性分析(理论探讨)
ILC算法的收敛性是保证其有效性的关键。对于基于神经网络的数据驱动ILC算法,收敛性分析具有一定的挑战性,因为它依赖于非线性系统动力学和神经网络的非线性映射。然而,我们可以从理论上探讨收敛的可能性。
假设系统是满足一些性质的非线性SISO系统,例如在期望轨迹附近满足局部线性化条件。并且假设神经网络具有足够的逼近能力,能够学习到一个合适的迭代更新律。
然而,借鉴传统ILC的收敛性分析方法,通常考虑输入到误差的映射算子的范数。如果这个范数小于1,则迭代过程收敛。对于非线性系统和神经网络,这个算子是非线性的。
另一种分析思路是基于能量函数或Lyapunov函数。定义一个与误差相关的能量函数,并证明在每次迭代中该能量函数是单调递减的。构建合适的能量函数并证明其递减性对于非线性系统和数据驱动的控制方法是一个挑战。
尽管严格的理论收敛性证明具有挑战性,但在实际应用中,通过合理的神经网络结构设计、训练数据采集和训练策略,该数据驱动ILC算法通常能够在重复任务中表现出良好的收敛性和跟踪性能。仿真实验是验证算法有效性和收敛性的重要手段。
4. 结论与展望
本文提出了一种基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性SISO离散时间系统无人车的路径跟踪。该算法利用神经网络强大的非线性逼近能力,直接从车辆的输入输出数据中学习迭代更新律,无需依赖精确的车辆动力学模型。仿真实验结果表明,所提出的算法能够有效学习并实现对期望路径的高精度跟踪,并对随机扰动具有一定的鲁棒性。该算法为解决未知模型非线性无人车系统的重复路径跟踪问题提供了一种有效的数据驱动解决方案。
未来的研究方向可以包括:
- 多输入多输出(MIMO)系统扩展:
将算法扩展到处理多输入多输出的复杂无人车系统,例如同时控制横向位置和航向角。
- 鲁棒性增强:
进一步研究算法对更复杂、时变的扰动和模型不确定性的鲁棒性,例如通过在线适应性学习或鲁棒神经网络结构设计。
- 收敛性理论证明:
深入研究非线性系统下基于神经网络的ILC算法的收敛性,提供更严格的理论保证。
- 实时性优化:
针对实际无人车应用场景,优化算法的计算效率,满足实时控制要求。
- 结合其他控制方法:
将ILC与其他控制方法(如模型预测控制、自适应控制)相结合,发挥各自优势,进一步提升控制性能。
- 实际无人车平台验证:
在实际无人车平台上部署和测试所提出的算法,验证其在真实世界环境中的性能。
- 在线训练策略:
探索更有效的在线神经网络训练策略,以便在任务执行过程中实时更新学习到的控制律。
⛳️ 运行结果
🔗 参考文献
[1] 陈祥光,黄聪明.神经网络智能控制系统辨识模型结构的研究[J].北京理工大学学报, 1999, 19(1):5.DOI:10.3969/j.issn.1001-0645.1999.01.012.
[2] 史国庆,赵庆生.一种神经网络模型算法控制的研究[J].太原工业大学学报, 1994, 25(3):6.DOI:CNKI:SUN:TYGY.0.1994-03-007.
[3] 刘玉平,翟廉飞,柴天佑.基于神经网络和多模型的非线性自适应PID控制及应用[J].化工学报, 2008, 59(7):6.DOI:10.3321/j.issn:0438-1157.2008.07.012.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇