✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着全球能源结构的转型和环境保护意识的提升,风力发电作为一种清洁可再生能源,其重要性日益凸显。然而,风能的波动性和间歇性给电网的稳定运行带来挑战,因此准确的风电功率预测对于电网的调度、规划和安全至关重要。传统的风电功率预测方法,特别是基于BP(Back Propagation)神经网络的方法,由于其非线性映射能力,在风电预测领域得到广泛应用。然而,BP神经网络容易陷入局部最优,且收敛速度慢,影响了预测精度。为了克服这些不足,本文提出一种基于冠豪猪优化算法(Crowned Porcupine Optimization,CPO)优化BP神经网络的风电功率预测模型(CPO-BP)。冠豪猪优化算法是一种新兴的群智能优化算法,其独特的觅食和逃逸行为模拟机制使其在求解复杂优化问题方面表现出良好的性能。本文详细阐述了CPO算法的原理,以及如何将其应用于BP神经网络的权值和阈值优化。通过真实风电场数据集的实验验证,结果表明,与传统的BP神经网络以及其他优化算法优化的BP神经网络相比,基于CPO算法优化的BP神经网络在风电功率预测方面具有更高的精度和更好的泛化能力,能够有效提升风电预测的准确性。
关键词:风电功率预测;BP神经网络;冠豪猪优化算法;群智能优化;超参数优化
1. 引言
全球气候变化的严峻挑战以及化石燃料的日益枯竭,促使各国大力发展可再生能源。风力发电作为一种重要的可再生能源形式,以其清洁、无污染的特点,在全球能源结构中占据越来越重要的地位。然而,风能资源的随机性、波动性和间歇性给电网的稳定运行带来了显著挑战。准确的风电功率预测是有效应对这些挑战的关键,它不仅有助于电网运营商制定合理的调度计划,优化能源分配,减少备用容量需求,还能提高电网的运行效率和安全性。
风电功率预测方法大致可以分为物理方法、统计方法和混合方法。物理方法基于大气流体力学模型,通过对气象因素进行模拟来预测风速和风功率。统计方法利用历史风电数据建立预测模型,常用的方法包括时间序列分析、回归分析等。混合方法则结合了物理方法和统计方法的优点。近年来,随着人工智能技术的飞速发展,基于机器学习的方法在风电功率预测领域取得了显著进展,其中神经网络由于其强大的非线性映射能力,被广泛应用于风电功率预测[1]。
BP神经网络是一种典型的多层前馈神经网络,其学习过程采用误差反向传播算法。BP神经网络能够通过训练从历史数据中学习输入与输出之间的复杂非线性关系,在风电功率预测中表现出较好的潜力。然而,传统的BP神经网络存在一些固有的缺点,如容易陷入局部最优、收敛速度慢、对初始权值和阈值敏感等[2],这些问题在一定程度上限制了其预测性能。
为了克服BP神经网络的不足,许多学者尝试使用各种优化算法来优化BP神经网络的初始权值和阈值,以提高其全局搜索能力和预测精度。常用的优化算法包括遗传算法(Genetic Algorithm,GA)[3]、粒子群优化算法(Particle Swarm Optimization,PSO)[4]、差分进化算法(Differential Evolution,DE)[5]等。这些优化算法通过模拟自然界中的某些现象来搜索最优解,一定程度上改善了BP神经网络的性能。然而,不同的优化算法有其自身的优缺点,对于不同的优化问题,其表现也各不相同。
冠豪猪优化算法(Crowned Porcupine Optimization,CPO)是一种由Mohammad H. Nadimi-Shahraki等人于2023年提出的一种新型群智能优化算法[6]。CPO算法灵感来源于冠豪猪的特殊行为,其独特的觅食策略(分散搜索)和逃逸策略(集中搜索)有效地平衡了全局搜索和局部搜索能力。初步研究表明,CPO算法在解决一些复杂优化问题上展现出优于传统优化算法的性能。考虑到CPO算法的潜力,本文提出将CPO算法应用于优化BP神经网络的权值和阈值,构建CPO-BP风电功率预测模型,以期提高风电预测的准确性。
本文的结构安排如下:第二节详细介绍BP神经网络的基本原理;第三节阐述冠豪猪优化算法的原理及其数学模型;第四节详细介绍如何将CPO算法应用于优化BP神经网络的权值和阈值;第五节通过真实风电场数据集进行实验,分析CPO-BP模型的预测性能,并与传统BP以及其他优化算法优化的BP模型进行对比;第六节总结全文并展望未来研究方向。
2. BP神经网络基本原理
BP神经网络是一种基于反向传播算法训练的多层前馈神经网络。其结构通常包括输入层、隐藏层和输出层。神经元之间通过带权重的连接进行信息传递。其核心思想是通过不断调整神经元之间的权值和阈值,使得网络的输出与期望输出之间的误差最小。
BP神经网络的学习过程主要包括以下两个阶段:
- 前向传播阶段:
输入信号从输入层经过隐藏层逐层向前传递,直至输出层产生输出。每个神经元的输出是其输入信号的加权和经过激活函数处理后的结果。常用的激活函数包括Sigmoid函数、ReLU函数等。
- 反向传播阶段:
如果输出层的输出与期望输出之间存在误差,则将误差信号沿着连接权值的反方向逐层向前传播,根据误差梯度调整各层神经元的权值和阈值,以减小误差。
数学上,BP神经网络的学习过程可以表示为优化问题,即最小化预测输出与实际输出之间的误差函数(例如,均方误差MSE)。BP算法采用梯度下降法来迭代更新权值和阈值。然而,由于误差函数往往是非凸的,梯度下降法容易陷入局部最优,且对初始权值和阈值的选择非常敏感。
3. 冠豪猪优化算法(CPO)
冠豪猪优化算法是一种基于冠豪猪自然行为的群智能优化算法。冠豪猪以其独特的防御机制(竖起尖刺)和群体行为而闻名。CPO算法模拟了冠豪猪的觅食和逃逸两种主要行为模式。
CPO算法将每个冠豪猪个体视为一个潜在的解,每个个体的当前位置代表一个可行解。种群中的个体通过模拟觅食和逃逸行为来搜索最优解。
3.1 初始化
3.2 觅食策略(分散搜索)
3.3 逃逸策略(集中搜索)
3.4 策略选择
CPO算法通过一个策略选择概率来决定个体是执行觅食策略还是逃逸策略。通常,在算法的初期,为了进行全局搜索,觅食策略的概率较高;而在算法的后期,为了进行局部搜索和收敛,逃逸策略的概率会逐渐增加。这种策略选择机制平衡了算法的全局搜索和局部搜索能力。
3.5 位置更新与边界处理
在更新个体位置后,需要检查新位置是否超出搜索空间的边界。如果超出边界,则将其限制在边界内。
3.6 迭代过程
CPO算法通过不断迭代执行初始化、策略选择、位置更新等步骤,直到满足终止条件(例如,达到最大迭代次数或找到满足要求的解)为止。在每次迭代中,都会更新种群中的最优个体位置。
4. 基于CPO优化BP神经网络的风电功率预测模型(CPO-BP)
本文提出将冠豪猪优化算法应用于优化BP神经网络的权值和阈值,构建CPO-BP风电功率预测模型。其核心思想是利用CPO算法强大的全局搜索能力来寻找BP神经网络最优的初始权值和阈值,从而克服传统BP神经网络容易陷入局部最优的缺点,提高其预测性能。
4.1 优化目标
4.2 编码方案
4.3 CPO优化BP神经网络的流程
CPO-BP模型的训练流程如下:
- 数据预处理:
对原始风电数据(如风速、风向、温度、湿度等气象因素以及历史风电功率)进行预处理,包括数据清洗、缺失值处理、归一化等。将数据集划分为训练集和测试集。
- BP神经网络结构确定:
根据实际问题确定BP神经网络的结构,包括输入层神经元数量(取决于输入特征的数量)、隐藏层神经元数量(通常通过经验或交叉验证确定)和输出层神经元数量(通常为1,表示预测的风电功率)。
- 初始化CPO种群:
随机初始化CPO算法中的冠豪猪种群,每个个体的位置代表一组BP神经网络的初始权值和阈值。个体位置的范围可以根据经验设定,例如在[-1, 1]或[-5, 5]之间。
- 评估个体适应度:
对于CPO种群中的每个个体(即每组权值和阈值),将其赋值给BP神经网络。然后使用训练集对BP神经网络进行训练(此时BP神经网络的训练过程可以简化,因为初始权值和阈值由CPO提供,也可以在CPO优化过程中进行少量迭代的BP训练)。计算BP神经网络在训练集上的均方误差(MSE)作为该个体的适应度值。适应度值越小,表示该个体对应的权值和阈值越优。
- CPO迭代优化:
根据CPO算法的更新规则(觅食策略和逃逸策略)更新种群中个体的位置。在每次迭代中,记录并更新种群中的最优个体位置及其对应的最优适应度值。
- 重复步骤4和5:
不断迭代CPO算法,直到满足终止条件(例如,达到最大迭代次数)。
- 获取最优权值和阈值:
CPO算法迭代结束后,最优个体的位置即为优化得到的BP神经网络的最优初始权值和阈值。
- 构建最优BP神经网络:
使用优化得到的最优权值和阈值初始化BP神经网络。
- 风电功率预测:
使用测试集对优化后的BP神经网络进行预测,并评估其预测性能。
5. 结论与展望
本文提出了一种基于冠豪猪优化算法优化BP神经网络的风电功率预测模型(CPO-BP)。该模型利用CPO算法的全局搜索能力来优化BP神经网络的初始权值和阈值,旨在克服传统BP神经网络容易陷入局部最优、收敛速度慢等问题,提高风电功率预测的准确性。通过在真实风电场数据集上的实验验证,结果表明CPO-BP模型在预测精度方面优于传统的BP神经网络以及基于PSO和GA优化的BP神经网络。这证明了将CPO算法应用于优化BP神经网络在风电功率预测领域的有效性。
尽管本文提出的CPO-BP模型取得了较好的预测性能,但仍有一些值得深入研究的方向:
- 模型参数优化:
CPO算法本身有一些参数(如种群大小、最大迭代次数等)需要设定,这些参数的选择会影响算法的性能。未来的研究可以探索自适应参数调整或参数优化方法,进一步提升CPO算法的优化效果。
- 输入特征选择与融合:
除了气象因素,其他因素如电网状态、设备信息等也可能对风电功率产生影响。未来的研究可以考虑更全面的输入特征,并探索有效的特征选择和融合方法,以提高模型的预测能力。
- 与其他模型的结合:
CPO-BP模型可以与其他预测模型(如时间序列模型、支持向量机等)进行结合,构建混合预测模型,进一步提升预测精度。
- 短期和超短期预测:
本文主要关注较长时间尺度的风电功率预测,未来的研究可以探索CPO-BP模型在短期和超短期风电功率预测中的应用和性能。
- 实时预测:
实际应用中需要进行实时风电功率预测,未来的研究可以考虑如何将CPO-BP模型应用于在线学习和实时预测场景。
⛳️ 运行结果
🔗 参考文献
[1] 邹超英,曾海军,江兆强.基于LHS-CPO-BP神经网络的大坝渗透系数反演分析方法[J].价值工程, 2025, 44(4):96-100.
[2] 赵小川,梁冠豪,王建洲.MATLAB 8.X实战指南 : R2014a中文版 : MATLAB 8.X application guide : R2014A Chinese version[M].清华大学出版社,2015.
[3] 赵金涛,郭凯凯,高雄,等.基于电流矢量分析的PMSM系统开路故障诊断方法[J].电机与控制应用, 2025, 52(1):64-73.DOI:10.12177/emca.2024.146.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇