💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于冠豪猪优化算法(Crested Porcupine Optimizer, CPO)优化BP神经网络的研究,主要涉及将冠豪猪优化算法作为一种有效的优化策略,用于调整BP神经网络的权重和阈值,从而提高其预测或分类的准确性和效率。以下是对该研究的详细探讨:
一、冠豪猪优化算法(CPO)简介
冠豪猪优化算法是一种新型的元启发式优化算法,由Abdel-Basset等人在2024年初提出,并首次发表在中科院1区的SCI顶级期刊《Knowledge-Based Systems》上。该算法模拟了冠豪猪在寻找食物、避免天敌以及在复杂环境中生存的策略,特别是其四种独特的防御机制:视觉恐吓、声音恐吓、气味攻击和物理攻击。这些防御机制在算法中分别对应于探索和开发阶段,为优化问题提供了独特的解决方案。
二、BP神经网络概述
BP神经网络(Back Propagation Neural Network)是一种按照误差逆向传播算法训练的多层前馈神经网络,由Rumelhart和McClelland等科学家于1986年提出。BP神经网络具有强大的非线性映射能力和优良的多维函数映射能力,广泛应用于函数逼近、模式识别、分类和数据压缩等领域。然而,BP神经网络也存在学习速度慢、容易陷入局部极小值等缺点。
三、CPO优化BP神经网络的研究内容
- 优化目标:
- 通过CPO算法优化BP神经网络的权重和阈值,以最小化预测误差或分类错误率。
- 优化过程:
- 初始化:随机初始化BP神经网络的权重和阈值,以及CPO算法中冠豪猪个体的位置和速度。
- 适应度计算:利用训练数据计算每个冠豪猪个体对应的BP神经网络的适应度(即预测误差或分类错误率)。
- 更新机制:根据适应度值更新冠豪猪个体的位置和速度,并据此调整BP神经网络的权重和阈值。
- 迭代优化:重复适应度计算和更新机制,直到达到预定的迭代次数或满足停止条件。
- 关键技术:
- 循环群体缩减技术(CPR):在优化过程中动态调整冠豪猪群体的数量,以提高种群的多样性和收敛速度。
- 防御机制模拟:通过模拟冠豪猪的四种防御机制来指导搜索过程,包括视觉恐吓、声音恐吓、气味攻击和物理攻击,分别对应于算法的探索和开发阶段。
四、研究成果与应用
利用CPO算法优化BP神经网络的研究成果可以显著提高BP神经网络的性能,使其在解决复杂非线性问题时更具优势。这种优化方法已在多个领域得到应用,如风电功率预测、故障诊断、图像处理等。通过CPO算法的优化,BP神经网络能够更快地收敛到全局最优解,提高预测或分类的准确性和效率。
五、未来展望
随着冠豪猪优化算法和BP神经网络研究的不断深入,基于CPO优化BP神经网络的方法将在更多领域得到应用和推广。未来研究可以进一步探索CPO算法在不同优化问题中的适用性和有效性,以及如何通过改进算法结构或结合其他优化策略来进一步提高BP神经网络的性能。同时,也可以关注BP神经网络本身的发展动态,如深度学习技术的融合等,以推动该领域研究的不断进步。
📚2 运行结果
包括以下几种优化算法:
部分代码:
%% 调用算法
disp('正在优化,请等待……')
H1 = cell2mat(str(number));
eval(['[fMin , bestX, Convergence_curve ] =',H1,'(SearchAgents_no,Max_iter,lb,ub,dim,fobj);'])
%% 绘制进化曲线
figure
plot(Convergence_curve,'k-','linewidth',2)
xlabel('进化代数')
ylabel('均方误差')
legend('最佳适应度')
title('进化曲线')
setdemorandstream(temp);%此行代码用于生成随机数种子,确保结果可以复现
[~,optimize_test_simu]=fitness(bestX,inputnum,hiddennum_best,outputnum,net,inputn,outputn,inputn_test,outputps,output_test);
%% 比较算法预测值
str={'真实值','标准BP','优化后BP'};
figure('Units', 'pixels', ...
'Position', [300 300 860 370]);
plot(output_test,'-','Color',[0 1 0])
hold on
plot(test_simu0,'-.','Color',[1 1 0])
hold on
plot(optimize_test_simu,'-','Color',[0 0 1])
legend(str)
set (gca,"FontSize",12,'LineWidth',1.2)
box off
legend Box off
%% 比较算法误差
test_y = output_test;
Test_all = [];
y_test_predict = test_simu0;
[test_MAE,test_MAPE,test_MSE,test_RMSE,test_R2]=calc_error(y_test_predict,test_y);
Test_all=[Test_all;test_MAE test_MAPE test_MSE test_RMSE test_R2];
y_test_predict = optimize_test_simu;
[test_MAE,test_MAPE,test_MSE,test_RMSE,test_R2]=calc_error(y_test_predict,test_y);
Test_all=[Test_all;test_MAE test_MAPE test_MSE test_RMSE test_R2];
str={'真实值','标准BP','优化后BP'};
str1=str(2:end);
str2={'MAE','MAPE','MSE','RMSE','R2'};
data_out=array2table(Test_all);
data_out.Properties.VariableNames=str2;
data_out.Properties.RowNames=str1;
disp(data_out)
%% 柱状图 MAE MAPE RMSE 柱状图适合量纲差别不大的
color= [0 1 0
0.1339 0.7882 0.8588
0.1525 0.6645 0.1290
0.8549 0.9373 0.8275
0.1551 0.2176 0.8627
0.7843 0.1412 0.1373
0.2000 0.9213 0.8176
0.5569 0.8118 0.7882
1.0000 0.5333 0.5176];
figure('Units', 'pixels', ...
'Position', [300 300 660 375]);
plot_data_t=Test_all(:,[1,2,4])';
b=bar(plot_data_t,0.8);
hold on
for i = 1 : size(plot_data_t,2)
x_data(:, i) = b(i).XEndPoints';
end
for i =1:size(plot_data_t,2)
b(i).FaceColor = color(i,:);
b(i).EdgeColor=[0.3353 0.3314 0.6431];
b(i).LineWidth=1.2;
end
for i = 1 : size(plot_data_t,1)-1
xilnk=(x_data(i, end)+ x_data(i+1, 1))/2;
b1=xline(xilnk,'--','LineWidth',1.2);
hold on
end
ax=gca;
legend(b,str1,'Location','best')
ax.XTickLabels ={'MAE', 'MAPE', 'RMSE'};
set(gca,"FontSize",10,"LineWidth",1)
box off
legend box off
%% 二维图
figure
plot_data_t1=Test_all(:,[1,5])';
MarkerType={'*','>','pentagram','^','v'};
for i = 1 : size(plot_data_t1,2)
scatter(plot_data_t1(1,i),plot_data_t1(2,i),120,MarkerType{i},"filled")
hold on
end
set(gca,"FontSize",12,"LineWidth",2)
box off
legend box off
legend(str1,'Location','best')
xlabel('MAE')
ylabel('R2')
grid on
%% 雷达图
figure('Units', 'pixels', ...
'Position', [150 150 520 500]);
Test_all1=Test_all./sum(Test_all); %把各个指标归一化到一个量纲
Test_all1(:,end)=1-Test_all(:,end);
RC=radarChart(Test_all1);
str3={'MAE','MAPE','MSE','RMSE','R2'};
RC.PropName=str3;
RC.ClassName=str1;
RC=RC.draw();
RC.legend();
RC.setBkg('FaceColor',[1,1,1])
RC.setRLabel('Color','none')
colorList=[181 86 29;
78 101 155;
184 168 207;
231 188 198;
182 118 108;
239 164 132;
253 207 158]./255;
for n=1:RC.ClassNum
RC.setPatchN(n,'Color',colorList(n,:),'MarkerFaceColor',colorList(n,:))
end
%%
figure('Units', 'pixels', ...
'Position', [150 150 920 600]);
t = tiledlayout('flow','TileSpacing','compact');
for i=1:length(Test_all(:,1))
nexttile
th1 = linspace(2*pi/length(Test_all(:,1))/2,2*pi-2*pi/length(Test_all(:,1))/2,length(Test_all(:,1)));
r1 = Test_all(:,i)';
[u1,v1] = pol2cart(th1,r1);
M=compass(u1,v1);
for j=1:length(Test_all(:,1))
M(j).LineWidth = 2;
M(j).Color = colorList(j,:);
end
title(str2{i})
set(gca,"FontSize",10,"LineWidth",1)
end
legend(M,str1,"FontSize",10,"LineWidth",1,'Box','off','Location','southoutside')
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]尹相国,张文,胡柏华,等.基于BP神经网络算法的新一代智能变电站控制障碍分析与定位技术研究[J].自动化与仪器仪表, 2023(8):144-149.、
[2]李伟,何鹏举,杨恒,等.基于粗糙集和改进遗传算法优化BP神经网络的算法研究[J].西北工业大学学报, 2012, 30(4):6.DOI:10.3969/j.issn.1000-2758.2012.04.022.
[3]王晓荣,伦淑娴.基于改进粒子群算法的BP神经网络优化研究[J].渤海大学学报(自然科学版), 2008.DOI:JournalArticle/5aec645bc095d710d4ff1b17.
[3]邹琼,吴曦,张杨,et al.基于麻雀搜索算法优化的BP神经网络模型对2型糖尿病肾病的预测研究[J].中国全科医学, 2024, 27(08):961-970.DOI:10.12114/j.issn.1007-9572.2023.0360.
🌈4 Matlab代码、数据
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取