课程传送门:NVIDIA NIM入门
随着AI的迅猛发展,我们的世界已经进入了“AI纪元”。其中,生成式AI更是以其惊人的创造力和多样化的应用场景,成为了技术变革的核心驱动力。从文本生成到图像创作,从代码辅助到虚拟助手,生成式AI正以前所未有的速度重塑各个行业,激发出无尽的可能性。
对于开发者来说,构建一个高效的 AI 应用常常意味着面临多个难题:如何快速整合第三方服务?如何优化资源分配以应对突发负载?如何确保系统在故障时快速恢复?NIM 微服务架构的出现,为这些问题提供了答案。通过模块化设计和强大的 API 支持,NIM 成为开发者在 AI 领域的得力助手。
背景
现代AI的主要算法是人工神经网络,即模仿人类大脑神经元的传导,让机器像人一样“思考”。简而言之,我们希望AI做到的是,给予输入(如数字、文本、图像,甚至更为复杂的信息),AI可以给出同人类一样的反馈。
就像人类一样,只有通过“学习”才能懂得如何“思考”,得到我们想要的结果。其中,“学习资料”则是一笔一笔的“问题”和“答案”,就像小孩子学习识字一样,我们把汉字展示给他,让他说出是什么字,然后告诉他正确答案,循环往复,就是在这样的过程中认识汉字的。与之相同,AI也是如此,例如我们给出一张图片,让AI去判断其中的东西是什么,然后通过对比标准答案,优化“神经元”,如此下去,AI真的能够像人类一样“学习”。
然而,就像人类一样,更优异的成绩往往需要更加刻苦的学习,那么效果出类拔萃的AI就需要更加复杂的“学习”。神经元的数量、训练的次数、训练数据的优劣等因素,都会影响AI的表现。像我们熟知的ChatGPT,其训练所消耗的资源不是任何一台个人PC能负担的起的。
那么我们想要拥有自己的AI,但本地资源稍有欠缺,该怎么办呢?不同于现实世界,在AI的世界里,我们可以“复制”他人的大脑以达到其优秀的表现。简而言之,我们可以将他人AI模型训练好的神经元直接下载下来,这可能只需要一些本地硬盘资源,而不需要进行复杂的训练。AI就是在这样的开源环境下不断发展的,我们拿过他人造的轮子,组装性能更优秀的车,亦或是改进他人的轮子,甚至造出自己的轮子。
NVIDIA NIM
介绍
在当今快速发展的 AI 领域,构建高效、可扩展的 AI 应用已成为企业和研究机构的核心需求。随着模型规模的不断增长,尤其是大语言模型(LLM)的广泛应用,如何有效地部署和管理这些模型成为了一个关键挑战。传统的单体应用架构在面对复杂的 AI 推理任务时,往往显得笨重且难以扩展。为了解决这些问题,微服务架构应运而生,它将应用拆分为多个小型、独立的服务,每个服务专注于特定的功能,从而提高了系统的灵活性和可维护性。
NIM(Neural Inference Microservice)微服务正是在这种背景下诞生的。NIM 是一种专注于 AI 推理的微服务架构,旨在为开发者提供一个高效、可扩展的解决方案,用于部署和管理大规模的 AI 模型。NIM 微服务的核心思想是将 AI 推理任务封装为一个独立的服务,通过 API 与其他应用组件进行通信。这种设计不仅简化了 AI 模型的集成过程,还使得系统能够更好地应对高并发、低延迟的需求。
NIM 微服务的优势在于其模块化和独立性。开发者可以通过 NIM 微服务轻松地将 AI 推理能力集成到现有的应用中,而无需关心底层模型的复杂性。此外,NIM 微服务还支持批量推理、动态调度和资源优化,确保在大规模部署时仍能保持高性能和低延迟。无论是处理自然语言、图像识别,还是其他复杂的 AI 任务,NIM 微服务都能为开发者提供一个强大的工具,帮助他们快速构建和部署 AI 驱动的应用。
通过采用 NIM 微服务,开发者可以专注于业务逻辑的实现,而不必担心底层基础设施的复杂性。这种基于微服务的架构不仅提高了系统的可扩展性和弹性,还为 AI 应用的创新和迭代提供了更大的灵活性。
使用 NIM
点击这个链接llama-3_1-70b,可以直接看到一个NIM微服务是如何实现的。作为一个示例,这个微服务使用了Lama3模型,可以看到,NIM已经兼容了OpenAI的API接口,因此使用起来也无需花费大量精力去了解额外的API。
要切换模型,只需要修改一些参数即可,即插即用,十分方便。而且,网站提供了多种语言的部署指导,可以说是十分的人性化。要部署这项微服务,只需要运行docker标签下的命令即可
那么,已经了解他人的轮子是什么形状,下一步就可以动手造我们自己的轮子了!我们进入文章开头给出的NIM 入门课程链接,进入视频和动手实验模块,跟随其中的指导进入jupyter实验(感谢汉化组的汉化!),这个实验将基于NIM微服务,搭建一个RAG系统。感兴趣的小伙伴可以自己尝试一下,为了鼓励大家自己动手,这里就不给出教程,有问题的小伙伴欢迎私信交流!
结语
NIM微服务让我对 AI 推理的部署和优化有了全新的认识,也让我见识到了微服务的强大之处。它不仅是一个强大的工具,更是一种高效的开发范式。通过 NIM,我学会了如何将复杂的 AI 模型转化为可扩展、高性能的服务,同时也深刻体会到微服务架构在现代 AI 应用中的重要性。未来,我期待能够将 NIM 应用到更多实际项目中,探索其在更多场景下的潜力。