机器学习——模型评估

本文详细介绍了分类模型的评估指标如准确率、精确率、召回率和F1分数,并通过KNN实例展示了ROC曲线和PR曲线的差异,以及如何通过改变k值分析模型性能。特别强调了ROC曲线在处理不平衡数据集中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 常见的分类模型评估指标

  • 准确率(Accuracy):正确分类的样本数占总样本数的比例。
  • 精确率(Precision):真正例(TP)占预测为正例(TP+FP)的比例。
  • 召回率(Recall):真正例(TP)占实际为正例(TP+FN)的比例。
  • F1分数(F1 Score):精确率和召回率的调和平均值,用于综合评估模型性能。

from sklearn.metrics import confusion_matrix
y_true = [1, 1, 0, 1, 0, 0]
y_pred = [1, 1, 1, 1, 0, 1]
TN, FP, FN, TP = confusion_matrix(y_true, y_pred).ravel()
print(TN, FP, FN, TP)

运行结果为 
以这段代码为例来计算以上分类模型评估指标

TP表示原本为阳性,经模型预测后也为阳性的个数
FN表示原本为阳性,经模型预测后不为阳性的个数
FP、TN亦是如此。

1.1 准确率

Accuracy(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值