1. 常见的分类模型评估指标
- 准确率(Accuracy):正确分类的样本数占总样本数的比例。
- 精确率(Precision):真正例(TP)占预测为正例(TP+FP)的比例。
- 召回率(Recall):真正例(TP)占实际为正例(TP+FN)的比例。
- F1分数(F1 Score):精确率和召回率的调和平均值,用于综合评估模型性能。
from sklearn.metrics import confusion_matrix
y_true = [1, 1, 0, 1, 0, 0]
y_pred = [1, 1, 1, 1, 0, 1]
TN, FP, FN, TP = confusion_matrix(y_true, y_pred).ravel()
print(TN, FP, FN, TP)
运行结果为 
以这段代码为例来计算以上分类模型评估指标
TP表示原本为阳性,经模型预测后也为阳性的个数
FN表示原本为阳性,经模型预测后不为阳性的个数
FP、TN亦是如此。
1.1 准确率

本文详细介绍了分类模型的评估指标如准确率、精确率、召回率和F1分数,并通过KNN实例展示了ROC曲线和PR曲线的差异,以及如何通过改变k值分析模型性能。特别强调了ROC曲线在处理不平衡数据集中的重要性。
最低0.47元/天 解锁文章
1290

被折叠的 条评论
为什么被折叠?



