【信号与系统 - 11】单边拉普拉斯变换的性质

①线性特性
②(因果信号的)延时特性
③尺度变换
④复频移性
⑤时域微积分
⑥时/频域的卷积定理

1 线性性质

{ f 1 ( t ) ↔ X 1 ( s ) , f 2 ( t ) ↔ X 2 ( s ) a f 1 ( t ) + b f 2 ( t ) ↔ a X 1 ( s ) + b X 2 ( s ) \begin{cases} f_1(t)\leftrightarrow X_1(s),f_2(t)\leftrightarrow X_2(s)\\ af_1(t)+bf_2(t)\leftrightarrow aX_1(s)+bX_2(s) \end{cases} {f1(t)X1(s),f2(t)X2(s)af1(t)+bf2(t)aX1(s)+bX2(s)

2 延时特性(特别:针对因果信号)

  • 因果信号:有因才有果——系统没有 输入信号激励 的时候,必不可能有 输出信号响应。若系统在 t = 0 t=0 t=0 时接入输入信号激励,在 t < 0 t<0 t<0 时段必不能存在激励 f ( t ) ≠ 0 f(t)\neq 0 f(t)=0 的情况
  • 这就意味着,使用这个性质必须是右边信号(即 f ( t ) f(t) f(t) 中必须包含如 u ( t ) u(t) u(t) 类的阶跃信号)
  • 同时时移只能是单方向的延时(右移),即必须保证实常数 t 0 > 0 t_0>0 t0>0
  • 其中,奥本海默《信号与系统》一书给出:
    { f ( t ) ↔ X ( s ) f ( t − t 0 ) ↔ e − s t 0 X ( s ) \begin{cases} f(t)\leftrightarrow X(s)\\ f(t-t_0)\leftrightarrow e^{-st_0}X(s)\\ \end{cases} {f(t)X(s)f(tt0)est0X(s)

  • 推导:
    拟设定 f ( t ) f(t) f(t) 的定义域 t > 0 t>0 t>0

L [ f ( t ) ] = X ( s ) = ∫ 0 + ∞ f ( t ) ⋅ e − s t d t L[f(t)]=X(s)=\int_{0}^{+\infty}f(t)\cdot e^{-st}dt L[f(t)]=X(s)=0+f(t)estdt

f ( t − t 0 ) f(t-t_0) f(tt0) 的定义域 t > t 0 t>t_0 t>t0

L [ f ( t − t 0 ) ] = ∫ t 0 + ∞ f ( t − t 0 ) ⋅ e − s t d t = ∫ t 0 + ∞ f ( t − t 0 ) ⋅ e − s ( t − t 0 ) ⋅ e − s t 0 d ( t − t 0 ) L[f(t-t_0)]=\int_{t_0}^{+\infty}f(t-t_0)\cdot e^{-st}dt=\int_{t_0}^{+\infty}f(t-t_0)\cdot e^{-s(t-t_0)}\cdot e^{-st_0}d(t-t_0) L[f(tt0)]=t0+f(tt0)estdt=t0+f(tt0)es(tt0)est0d(tt0)

m = t − t 0 m=t-t_0 m=tt0,则:

L [ f ( t − t 0 ) ] = e − s t 0 ∫ 0 + ∞ f ( m ) ⋅ e − s m d m L[f(t-t_0)]=e^{-st_0}\int_{0}^{+\infty}f(m)\cdot e^{-sm}dm L[f(tt0)]=est00+f(m)esmdm

用上面 L [ f ( t ) ] L[f(t)] L[f(t)] 中的公式,将 m m m 替换 t t t,即 ∫ 0 + ∞ f ( t ) ⋅ e − s t d t = ∫ 0 + ∞ f ( m ) ⋅ e − s m d m \int_{0}^{+\infty}f(t)\cdot e^{-st}dt=\int_{0}^{+\infty}f(m)\cdot e^{-sm}dm 0+f(t)estdt=0+f(m)esmdm

L [ f ( t − t 0 ) ] = e − s t 0 X ( s ) L[f(t-t_0)]=e^{-st_0}X(s) L[f(tt0)]=est0X(s)


傅里叶变换有个与这个很像的性质叫时移性质:

{ f ( t ) ↔ F ( j w ) f ( t ± t 0 ) ↔ F ( j w ) e ± j w t 0 \begin{cases} f(t)\leftrightarrow F(jw)\\ f(t\pm t_0)\leftrightarrow F(jw)e^{\pm jwt_0}\\ \end{cases} {f(t)F(jw)f(t±t0)F(jw)e±jwt0

  • 推导过程:

F ( j w ) = ∫ − ∞ + ∞ e − j w t f ( t ) d t F(jw)=\int^{+\infty}_{-\infty}e^{-jwt}f(t)dt F(jw)=+ejwtf(t)dt

F T [ f ( t ± t 0 ) ] = e ± j w t 0 ∫ − ∞ + ∞ f ( t ± t 0 ) e − j w ( t ± t 0 ) d ( t ± t 0 ) FT[f(t\pm t_0)]=e^{\pm jwt_0}\int^{+\infty}_{-\infty}f(t\pm t_0)e^{-jw(t\pm t_0)}d(t\pm t_0) FT[f(t±t0)]=e±jwt0+f(t±t0)ejw(t±t0)d(t±t0)

因为 ∫ − ∞ + ∞ f ( m ) e − j w m d m = ∫ − ∞ + ∞ e − j w t f ( t ) d t \int^{+\infty}_{-\infty}f(m)e^{-jwm}dm=\int^{+\infty}_{-\infty}e^{-jwt}f(t)dt +f(m)ejwmdm=+ejwtf(t)dt,所以:

F T [ f ( t ± t 0 ) ] = F ( j w ) e ± j w t 0 FT[f(t\pm t_0)]=F(jw)e^{\pm jwt_0} FT[f(t±t0)]=F(jw)e±jwt0


例、求 f ( t ) = ( t − t 0 ) u ( t − t 0 ) f(t)=(t-t_0)u(t-t_0) f(t)=(tt0)u(tt0) 的拉普拉斯变换

其中: y ( t ) = t u ( t ) ↔ 1 s 2 y(t)=tu(t)\leftrightarrow \frac{1}{s^2} y(t)=tu(t)s21
y ( t − t 0 ) = ( t − t 0 ) u ( t − t 0 ) ↔ 1 s 2 e − t 0 s y(t-t_0)=(t-t_0)u(t-t_0)\leftrightarrow \frac{1}{s^2}e^{-t_0s} y(tt0)=(tt0)u(tt0)s21et0s

在这里插入图片描述

  • f 1 ( t ) = t − t 0 f_1(t)=t-t_0 f1(t)=tt0
    由于单边拉氏变换,得:
    X 1 ( s ) = L [ ( t − t 0 ) u ( t ) ] = X 2 X_1(s)=L[(t-t_0)u(t)]=X_2 X1(s)=L[(tt0)u(t)]=X2
  • f 2 ( t ) = ( t − t 0 ) u ( t ) f_2(t)=(t-t_0)u(t) f2(t)=(tt0)u(t)
    X 2 ( s ) = L [ f 2 ( t ) ] = L [ t u ( t ) ] − L [ t 0 u ( t ) ] X_2(s)=L[f_2(t)]=L[tu(t)]-L[t_0u(t)] X2(s)=L[f2(t)]=L[tu(t)]L[t0u(t)]
    其中 L [ t u ( t ) ] = 1 s 2 L[tu(t)]=\frac{1}{s^2} L[tu(t)]=s21 L [ t 0 u ( t ) ] = t 0 L [ u ( t ) ] = t 0 s L[t_0u(t)]=t_0L[u(t)]=\frac{t_0}{s} L[t0u(t)]=t0L[u(t)]=st0,则:
    X 2 ( s ) = 1 s 2 − t 0 s X_2(s)=\frac{1}{s^2}-\frac{t_0}{s} X2(s)=s21st0
  • f 3 ( t ) = t u ( t − t 0 ) f_3(t)=tu(t-t_0) f3(t)=tu(tt0)
    X 3 ( s ) = [ ( t − t 0 ) + t 0 ] u ( t − t 0 ) X_3(s)=[(t-t_0)+t_0]u(t-t_0) X3(s)=[(tt0)+t0]u(tt0)
    其中 L [ ( t − t 0 ) u ( t − t 0 ) ] = 1 s 2 e − t 0 s L[(t-t_0)u(t-t_0)]=\frac{1}{s^2}e^{-t_0s} L[(tt0)u(tt0)]=s21et0s L [ t 0 u ( t − t 0 ) ] = t 0 e − t 0 s L[t_0u(t-t_0)]=t_0e^{-t_0s} L[t0u(tt0)]=t0et0s
    X 3 ( s ) = 1 s 2 e − t 0 s + t 0 e − t 0 s X_3(s)=\frac{1}{s^2}e^{-t_0s}+t_0e^{-t_0s} X3(s)=s21et0s+t0et0s

3 尺度变换

{ f ( t ) ↔ X ( s ) f ( a t ) ↔ 1 a X ( s a ) , a > 0 \begin{cases} f(t)\leftrightarrow X(s)\\ f(at)\leftrightarrow \frac{1}{a}X(\frac{s}{a}),a>0\\ \end{cases} {f(t)X(s)f(at)a1X(as),a>0

4 复频移性

{ f ( t ) ↔ X ( s ) f ( t ) e ± s 0 t ↔ X ( s ∓ s 0 ) \begin{cases} f(t)\leftrightarrow X(s)\\ f(t)e^{\pm s_0t}\leftrightarrow X(s\mp s_0)\\ \end{cases} {f(t)X(s)f(t)e±s0tX(ss0)

5 时域微积分特性

5-1 时域微分特性

{ f ( t ) ↔ X ( s ) d d t [ f ( t ) ] ↔ s X ( s ) − f ( 0 − ) \begin{cases} f(t)\leftrightarrow X(s)\\ \frac{d}{dt}[f(t)]\leftrightarrow sX(s)-f(0_{-})\\ \end{cases} {f(t)X(s)dtd[f(t)]sX(s)f(0)
拓展:
d n d t n [ f ( t ) ] ↔ s n X ( s ) − ∑ m = 0 n − 1 s n − 1 − m f ( m ) ( 0 − ) \frac{d^n}{dt^n}[f(t)]\leftrightarrow s^nX(s)-\sum_{m=0}^{n-1}s^{n-1-m}f^{(m)}(0_{-}) dtndn[f(t)]snX(s)m=0n1sn1mf(m)(0)
居多使用的是:
f ′ ′ ( t ) = s 2 X ( s ) − s f ( 0 − ) − f ′ ( 0 − ) f''(t)=s^2X(s)-sf(0_{-})-f'(0_{-}) f′′(t)=s2X(s)sf(0)f(0)


  • 提到微分容易想起电容电感的VCR方程:
    对电容 C C C i C = C d u C d t i_C=C\frac{du_C}{dt} iC=CdtduC 【电容电流是其电压对时间的微分】
    对电感 L L L u L = L d i L d t u_L=L\frac{di_L}{dt} uL=LdtdiL 【电感电压是其电流对时间的微分】

{ i C ↔ C [ s U C ( s ) − u C ( 0 − ) ] u L ↔ L [ s I L ( s ) − i L ( 0 − ) ] \begin{cases} i_C\leftrightarrow C[sU_C{(s)}-u_C(0_{-})]\\ u_L\leftrightarrow L[sI_L(s)-i_L(0_{-})]\\ \end{cases} {iCC[sUC(s)uC(0)]uLL[sIL(s)iL(0)]

  • 例、 u S ( t ) = δ ( t ) u_S(t)=\delta(t) uS(t)=δ(t)
    在这里插入图片描述
    U S ( s ) = 1 U_S(s)=1 US(s)=1 Z R = R = 1 Z_R=R=1 ZR=R=1 Z C ( s ) = 1 s C = 1 s Z_C(s)=\frac{1}{sC}=\frac{1}{s} ZC(s)=sC1=s1 Z L ( s ) = s L Z_L(s)=sL ZL(s)=sL
    H ( s ) = Y ( s ) X ( s ) = U C ( s ) U S ( s ) = Z C ( s ) Z C ( s ) + Z R ( s ) = 1 s 1 s + 1 = 1 s + 1 H(s)=\frac{Y(s)}{X(s)}=\frac{U_C(s)}{U_S(s)}=\frac{Z_C(s)}{Z_C(s)+Z_R(s)}=\frac{\frac{1}{s}}{\frac{1}{s}+1}=\frac{1}{s+1} H(s)=X(s)Y(s)=US(s)UC(s)=ZC(s)+ZR(s)ZC(s)=s1+1s1=s+11
    d d t [ u C ( t ) ] + u C ( t ) = u S ( t ) = δ ( t ) \frac{d}{dt}[u_C(t)]+u_C(t)=u_S(t)=\delta(t) dtd[uC(t)]+uC(t)=uS(t)=δ(t)
    对上边微分方程两边进行拉氏变换:
    s U C ( s ) − u C ( 0 − ) + U C ( s ) = 1 sU_C(s)-u_C(0_{-})+U_C(s)=1 sUC(s)uC(0)+UC(s)=1
    U C ( s ) = 1 + u C ( 0 − ) ( s + 1 ) = 2 s + 1 U_C(s)=\frac{1+u_C(0_{-})}{(s+1)}=\frac{2}{s+1} UC(s)=(s+1)1+uC(0)=s+12
    u C ( t ) = 2 e − t u ( t ) u_C(t)=2e^{-t}u(t) uC(t)=2etu(t)

5-1 时域积分特性

{ f ( t ) ↔ X ( s ) ∫ 0 − t [ f ( τ ) d τ ] ↔ X ( s ) s \begin{cases} f(t)\leftrightarrow X(s)\\ \int_{0_{-}}^{t}[f(\tau)d\tau]\leftrightarrow \frac{X(s)}{s}\\ \end{cases} {f(t)X(s)0t[f(τ)dτ]sX(s)

6 时/频域的卷积定理

与傅里叶变换性质一致

在这里插入图片描述

  • 15
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值