①线性特性
②(因果信号的)延时特性
③尺度变换
④复频移性
⑤时域微积分
⑥时/频域的卷积定理
1 线性性质
{ f 1 ( t ) ↔ X 1 ( s ) , f 2 ( t ) ↔ X 2 ( s ) a f 1 ( t ) + b f 2 ( t ) ↔ a X 1 ( s ) + b X 2 ( s ) \begin{cases} f_1(t)\leftrightarrow X_1(s),f_2(t)\leftrightarrow X_2(s)\\ af_1(t)+bf_2(t)\leftrightarrow aX_1(s)+bX_2(s) \end{cases} { f1(t)↔X1(s),f2(t)↔X2(s)af1(t)+bf2(t)↔aX1(s)+bX2(s)
2 延时特性(特别:针对因果信号)
- 因果信号:有因才有果——系统没有 输入信号激励 的时候,必不可能有 输出信号响应。若系统在 t = 0 t=0 t=0 时接入输入信号激励,在 t < 0 t<0 t<0 时段必不能存在激励 f ( t ) ≠ 0 f(t)\neq 0 f(t)=0 的情况
- 这就意味着,使用这个性质必须是右边信号(即 f ( t ) f(t) f(t) 中必须包含如 u ( t ) u(t) u(t) 类的阶跃信号)
- 同时时移只能是单方向的延时(右移),即必须保证实常数 t 0 > 0 t_0>0 t0>0
- 其中,奥本海默《信号与系统》一书给出:
{ f ( t ) ↔ X ( s ) f ( t − t 0 ) ↔ e − s t 0 X ( s ) \begin{cases} f(t)\leftrightarrow X(s)\\ f(t-t_0)\leftrightarrow e^{-st_0}X(s)\\ \end{cases} { f(t)↔X(s)f(t−t0)↔e−st0X(s)
- 推导:
拟设定 f ( t ) f(t) f(t) 的定义域 t > 0 t>0 t>0
L [ f ( t ) ] = X ( s ) = ∫ 0 + ∞ f ( t ) ⋅ e − s t d t L[f(t)]=X(s)=\int_{0}^{+\infty}f(t)\cdot e^{-st}dt L[f(t)]=X(s)=∫0+∞f(t)⋅e−stdt
则 f ( t − t 0 ) f(t-t_0) f(t−t0) 的定义域 t > t 0 t>t_0 t>t0
L [ f ( t − t 0 ) ] = ∫ t 0 + ∞ f ( t − t 0 ) ⋅ e − s t d t = ∫ t 0 + ∞ f ( t − t 0 ) ⋅ e − s ( t − t 0 ) ⋅ e − s t 0 d ( t − t 0 ) L[f(t-t_0)]=\int_{t_0}^{+\infty}f(t-t_0)\cdot e^{-st}dt=\int_{t_0}^{+\infty}f(t-t_0)\cdot e^{-s(t-t_0)}\cdot e^{-st_0}d(t-t_0) L[f(t−t0)]=∫t0+∞f(t−t0)⋅e−stdt=∫t0+∞f(t−t0)⋅e−s(t−t0)⋅e−st0d(t−t0)
令 m = t − t 0 m=t-t_0 m=t−t0,则:
L [ f ( t − t 0 ) ] = e − s t 0 ∫ 0 + ∞ f ( m ) ⋅ e − s m d m L[f(t-t_0)]=e^{-st_0}\int_{0}^{+\infty}f(m)\cdot e^{-sm}dm L[f(t−t0)]=e−st0∫0+∞<