1 习题
已知 f ( t ) f(t) f(t) 的傅里叶变换为 F ( j w ) F(jw) F(jw) ,求如下信号的傅里叶变换
- (1)
t
⋅
f
(
3
t
)
t\cdot f(3t)
t⋅f(3t)
解:
f ( 3 t ) ↔ 1 3 F ( j w 3 ) f(3t)\leftrightarrow \frac{1}{3}F(j\frac{w}{3}) f(3t)↔31F(j3w)
t ⋅ f ( 3 t ) ↔ j 1 3 ⋅ d d w [ F ( j w 3 ) ] t\cdot f(3t)\leftrightarrow j\frac{1}{3}\cdot\frac{d}{dw}[F(j\frac{w}{3})] t⋅f(3t)↔j31⋅dwd[F(j3w)]
其中: d ( w 3 ) = 1 3 d w d(\frac{w}{3})=\frac{1}{3}dw d(3w)=31dw,则 d w = 3 d ( w 3 ) dw=3d(\frac{w}{3}) dw=3d(3w),所以 d d w [ F ( j w 3 ) ] = 1 3 d d ( w 3 ) [ F ( j w 3 ) ] \frac{d}{dw}[F(j\frac{w}{3})]=\frac{1}{3}\frac{d}{d(\frac{w}{3})}[F(j\frac{w}{3})] dwd[F(j3w)]=31d(3w)d[F(j3w)],则 t ⋅ f ( 3 t ) ↔ j 1 9 ⋅ F ′ ( j w 3 ) t\cdot f(3t)\leftrightarrow j\frac{1}{9}\cdot F'(j\frac{w}{3}) t⋅f(3t)↔j91⋅F′(j3w)
举例:
{
F
(
j
w
)
=
w
2
+
j
2
w
①
F
(
j
w
3
)
=
(
w
3
)
2
+
j
(
2
w
3
)
②
\begin{cases} F(jw)=w^2+j2w①\\ F(j\frac{w}{3})=(\frac{w}{3})^2+j(\frac{2w}{3})② \end{cases}
{F(jw)=w2+j2w①F(j3w)=(3w)2+j(32w)②
{
求式①导:
F
′
(
j
w
)
=
2
w
+
j
2
③
求式②导:
F
′
(
j
w
3
)
=
1
3
⋅
(
2
⋅
w
3
)
+
j
2
3
④
\begin{cases} 求式①导:F'(jw)=2w+j2③\\ 求式②导:F'(j\frac{w}{3})=\frac{1}{3}\cdot (2\cdot\frac{w}{3})+j\frac{2}{3}④ \end{cases}
{求式①导:F′(jw)=2w+j2③求式②导:F′(j3w)=31⋅(2⋅3w)+j32④
用
w
3
\frac{w}{3}
3w 代替原来的 ③式中的
w
w
w ,得到:
F
′
(
j
w
3
)
=
2
w
3
+
j
2
F'(j\frac{w}{3})=2\frac{w}{3}+j2
F′(j3w)=23w+j2⑤
则
⑤
=
④
×
1
3
⑤=④×\frac{1}{3}
⑤=④×31
解释:
④
④
④ 式中的求导是仅仅是对
w
w
w 进行求导(相当于
④
=
d
d
w
[
F
(
j
w
3
)
]
④=\frac{d}{dw}[F(j\frac{w}{3})]
④=dwd[F(j3w)]),而
⑤
⑤
⑤ 式得到的是
d
d
(
w
3
)
[
F
(
j
w
3
)
]
\frac{d}{d(\frac{w}{3})}[F(j\frac{w}{3})]
d(3w)d[F(j3w)]
总结:实际上改变的仅仅是 w w w,而不是 j w jw jw这个整体 !
- (2)
(
t
−
1
)
d
[
f
(
t
)
]
d
t
(t-1)\frac{d[f(t)]}{dt}
(t−1)dtd[f(t)]
解:
d
[
f
(
t
)
]
d
t
↔
j
w
F
(
j
w
)
\frac{d[f(t)]}{dt}\leftrightarrow jwF(jw)
dtd[f(t)]↔jwF(jw)
t
⋅
d
[
f
(
t
)
]
d
t
↔
j
d
d
w
[
j
w
F
(
j
w
)
]
=
−
d
d
w
[
w
F
(
j
w
)
]
=
−
[
F
(
j
w
)
+
w
F
′
(
j
w
)
]
t\cdot\frac{d[f(t)]}{dt}\leftrightarrow j\frac{d}{dw}[jwF(jw)]=-\frac{d}{dw}[wF(jw)]=-[F(jw)+wF'(jw)]
t⋅dtd[f(t)]↔jdwd[jwF(jw)]=−dwd[wF(jw)]=−[F(jw)+wF′(jw)]
(
t
−
1
)
⋅
d
[
f
(
t
)
]
d
t
↔
j
d
d
w
[
j
w
F
(
j
w
)
]
=
−
d
d
w
[
w
F
(
j
w
)
]
=
−
[
F
(
j
w
)
+
w
F
′
(
j
w
)
]
−
j
F
′
(
j
w
)
=
−
[
F
(
j
w
)
+
(
w
+
1
)
F
′
(
j
w
)
]
(t-1)\cdot\frac{d[f(t)]}{dt}\leftrightarrow j\frac{d}{dw}[jwF(jw)]=-\frac{d}{dw}[wF(jw)]=-[F(jw)+wF'(jw)]-jF'(jw)=-[F(jw)+(w+1)F'(jw)]
(t−1)⋅dtd[f(t)]↔jdwd[jwF(jw)]=−dwd[wF(jw)]=−[F(jw)+wF′(jw)]−jF′(jw)=−[F(jw)+(w+1)F′(jw)]
- (3)
(
2
−
t
)
f
(
2
−
t
)
(2-t)f(2-t)
(2−t)f(2−t)
解:
f
(
2
−
t
)
=
f
[
−
(
t
−
2
)
]
↔
F
(
−
j
w
)
e
−
j
2
w
f(2-t)=f[-(t-2)]\leftrightarrow F(-jw)e^{-j2w}
f(2−t)=f[−(t−2)]↔F(−jw)e−j2w
t
⋅
f
(
2
−
t
)
↔
j
d
d
w
[
F
(
−
j
w
)
e
−
j
2
w
=
−
j
d
d
(
−
w
)
[
F
(
−
j
w
)
e
−
j
2
w
]
=
−
j
[
F
′
(
−
j
w
)
e
−
j
2
w
−
j
2
F
(
−
j
w
)
e
−
j
2
w
]
t\cdot f(2-t)\leftrightarrow j\frac{d}{dw}[F(-jw)e^{-j2w}=-j\frac{d}{d(-w)}[F(-jw)e^{-j2w}]=-j\Big[F'(-jw)e^{-j2w}-j2F(-jw)e^{-j2w}\Big]
t⋅f(2−t)↔jdwd[F(−jw)e−j2w=−jd(−w)d[F(−jw)e−j2w]=−j[F′(−jw)e−j2w−j2F(−jw)e−j2w]
(
2
−
t
)
⋅
f
(
2
−
t
)
↔
2
F
(
−
j
w
)
e
−
j
2
w
+
[
j
F
′
(
−
j
w
)
e
−
j
2
w
−
2
F
(
−
j
w
)
e
−
j
2
w
]
=
j
F
′
(
−
j
w
)
e
−
j
2
w
(2-t)\cdot f(2-t)\leftrightarrow 2F(-jw)e^{-j2w}+[jF'(-jw)e^{-j2w}-2F(-jw)e^{-j2w}]=jF'(-jw)e^{-j2w}
(2−t)⋅f(2−t)↔2F(−jw)e−j2w+[jF′(−jw)e−j2w−2F(−jw)e−j2w]=jF′(−jw)e−j2w
2 补充:二倍角以及积化和差公式
{ c o s α ⋅ c o s β = 1 2 [ c o s ( α + β ) + c o s ( α − β ) ] 【调制】 s i n α ⋅ s i n β = − 1 2 [ c o s ( α + β ) − c o s ( α − β ) ] c o s α ⋅ s i n β = 1 2 [ s i n ( α + β ) − s i n ( α − β ) ] s i n α ⋅ c o s β = 1 2 [ s i n ( α + β ) + s i n ( α − β ) ] \begin{cases} cos\alpha \cdot cos\beta=\frac{1}{2}[cos(\alpha+\beta)+cos(\alpha-\beta)]【调制】\\ sin\alpha \cdot sin\beta=-\frac{1}{2}[cos(\alpha+\beta)-cos(\alpha-\beta)]\\ cos\alpha \cdot sin\beta=\frac{1}{2}[sin(\alpha+\beta)-sin(\alpha-\beta)]\\ sin\alpha \cdot cos\beta=\frac{1}{2}[sin(\alpha+\beta)+sin(\alpha-\beta)]\\ \end{cases} ⎩ ⎨ ⎧cosα⋅cosβ=21[cos(α+β)+cos(α−β)]【调制】sinα⋅sinβ=−21[cos(α+β)−cos(α−β)]cosα⋅sinβ=21[sin(α+β)−sin(α−β)]sinα⋅cosβ=21[sin(α+β)+sin(α−β)]
s
i
n
(
2
α
)
=
2
s
i
n
α
⋅
c
o
s
α
sin(2\alpha)=2sin\alpha\cdot cos\alpha
sin(2α)=2sinα⋅cosα
{
c
o
s
(
2
α
)
=
2
c
o
s
2
α
−
1
=
1
−
2
s
i
n
2
α
=
c
o
s
2
α
−
s
i
n
2
α
c
o
s
2
α
=
c
o
s
(
2
α
)
+
1
2
s
i
n
2
α
=
1
−
c
o
s
(
2
α
)
2
\begin{cases} cos(2\alpha)=2cos^2\alpha-1=1-2sin^2\alpha=cos^2\alpha-sin^2\alpha\\ cos^2\alpha=\frac{cos(2\alpha)+1}{2}\\ sin^2\alpha=\frac{1-cos(2\alpha)}{2}\\ \end{cases}
⎩
⎨
⎧cos(2α)=2cos2α−1=1−2sin2α=cos2α−sin2αcos2α=2cos(2α)+1sin2α=21−cos(2α)
t a n ( 2 α ) = 2 t a n α 1 − t a n 2 α tan(2\alpha)=\frac{2tan\alpha}{1-tan^2\alpha} tan(2α)=1−tan2α2tanα