【信号与系统 - 9】傅里叶变换的性质习题

文章详细解释了信号的傅里叶变换规则,涉及线性乘积、导数与傅里叶变换的关系,以及二倍角公式在信号分析中的应用。重点展示了如何利用这些公式计算特定信号的傅里叶变换结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 习题

已知 f ( t ) f(t) f(t) 的傅里叶变换为 F ( j w ) F(jw) F(jw) ,求如下信号的傅里叶变换

  • (1) t ⋅ f ( 3 t ) t\cdot f(3t) tf(3t)
    解:
    f ( 3 t ) ↔ 1 3 F ( j w 3 ) f(3t)\leftrightarrow \frac{1}{3}F(j\frac{w}{3}) f(3t)31F(j3w)
    t ⋅ f ( 3 t ) ↔ j 1 3 ⋅ d d w [ F ( j w 3 ) ] t\cdot f(3t)\leftrightarrow j\frac{1}{3}\cdot\frac{d}{dw}[F(j\frac{w}{3})] tf(3t)j31dwd[F(j3w)]
    其中: d ( w 3 ) = 1 3 d w d(\frac{w}{3})=\frac{1}{3}dw d(3w)=31dw,则 d w = 3 d ( w 3 ) dw=3d(\frac{w}{3}) dw=3d(3w),所以 d d w [ F ( j w 3 ) ] = 1 3 d d ( w 3 ) [ F ( j w 3 ) ] \frac{d}{dw}[F(j\frac{w}{3})]=\frac{1}{3}\frac{d}{d(\frac{w}{3})}[F(j\frac{w}{3})] dwd[F(j3w)]=31d(3w)d[F(j3w)],则 t ⋅ f ( 3 t ) ↔ j 1 9 ⋅ F ′ ( j w 3 ) t\cdot f(3t)\leftrightarrow j\frac{1}{9}\cdot F'(j\frac{w}{3}) tf(3t)j91F(j3w)

举例:
{ F ( j w ) = w 2 + j 2 w ① F ( j w 3 ) = ( w 3 ) 2 + j ( 2 w 3 ) ② \begin{cases} F(jw)=w^2+j2w①\\ F(j\frac{w}{3})=(\frac{w}{3})^2+j(\frac{2w}{3})② \end{cases} {F(jw)=w2+j2wF(j3w)=(3w)2+j(32w)

{ 求式①导: F ′ ( j w ) = 2 w + j 2 ③ 求式②导: F ′ ( j w 3 ) = 1 3 ⋅ ( 2 ⋅ w 3 ) + j 2 3 ④ \begin{cases} 求式①导:F'(jw)=2w+j2③\\ 求式②导:F'(j\frac{w}{3})=\frac{1}{3}\cdot (2\cdot\frac{w}{3})+j\frac{2}{3}④ \end{cases} {求式导:F(jw)=2w+j2③求式导:F(j3w)=31(23w)+j32
w 3 \frac{w}{3} 3w 代替原来的 ③式中的 w w w ,得到: F ′ ( j w 3 ) = 2 w 3 + j 2 F'(j\frac{w}{3})=2\frac{w}{3}+j2 F(j3w)=23w+j2
⑤ = ④ × 1 3 ⑤=④×\frac{1}{3} =×31
解释: ④ ④ 式中的求导是仅仅是对 w w w 进行求导(相当于 ④ = d d w [ F ( j w 3 ) ] ④=\frac{d}{dw}[F(j\frac{w}{3})] =dwd[F(j3w)]),而 ⑤ ⑤ 式得到的是 d d ( w 3 ) [ F ( j w 3 ) ] \frac{d}{d(\frac{w}{3})}[F(j\frac{w}{3})] d(3w)d[F(j3w)]

总结:实际上改变的仅仅是 w w w,而不是 j w jw jw这个整体 !


  • (2) ( t − 1 ) d [ f ( t ) ] d t (t-1)\frac{d[f(t)]}{dt} (t1)dtd[f(t)]
    解:

d [ f ( t ) ] d t ↔ j w F ( j w ) \frac{d[f(t)]}{dt}\leftrightarrow jwF(jw) dtd[f(t)]jwF(jw)
t ⋅ d [ f ( t ) ] d t ↔ j d d w [ j w F ( j w ) ] = − d d w [ w F ( j w ) ] = − [ F ( j w ) + w F ′ ( j w ) ] t\cdot\frac{d[f(t)]}{dt}\leftrightarrow j\frac{d}{dw}[jwF(jw)]=-\frac{d}{dw}[wF(jw)]=-[F(jw)+wF'(jw)] tdtd[f(t)]jdwd[jwF(jw)]=dwd[wF(jw)]=[F(jw)+wF(jw)]
( t − 1 ) ⋅ d [ f ( t ) ] d t ↔ j d d w [ j w F ( j w ) ] = − d d w [ w F ( j w ) ] = − [ F ( j w ) + w F ′ ( j w ) ] − j F ′ ( j w ) = − [ F ( j w ) + ( w + 1 ) F ′ ( j w ) ] (t-1)\cdot\frac{d[f(t)]}{dt}\leftrightarrow j\frac{d}{dw}[jwF(jw)]=-\frac{d}{dw}[wF(jw)]=-[F(jw)+wF'(jw)]-jF'(jw)=-[F(jw)+(w+1)F'(jw)] (t1)dtd[f(t)]jdwd[jwF(jw)]=dwd[wF(jw)]=[F(jw)+wF(jw)]jF(jw)=[F(jw)+(w+1)F(jw)]

  • (3) ( 2 − t ) f ( 2 − t ) (2-t)f(2-t) (2t)f(2t)
    解:

f ( 2 − t ) = f [ − ( t − 2 ) ] ↔ F ( − j w ) e − j 2 w f(2-t)=f[-(t-2)]\leftrightarrow F(-jw)e^{-j2w} f(2t)=f[(t2)]F(jw)ej2w
t ⋅ f ( 2 − t ) ↔ j d d w [ F ( − j w ) e − j 2 w = − j d d ( − w ) [ F ( − j w ) e − j 2 w ] = − j [ F ′ ( − j w ) e − j 2 w − j 2 F ( − j w ) e − j 2 w ] t\cdot f(2-t)\leftrightarrow j\frac{d}{dw}[F(-jw)e^{-j2w}=-j\frac{d}{d(-w)}[F(-jw)e^{-j2w}]=-j\Big[F'(-jw)e^{-j2w}-j2F(-jw)e^{-j2w}\Big] tf(2t)jdwd[F(jw)ej2w=jd(w)d[F(jw)ej2w]=j[F(jw)ej2wj2F(jw)ej2w]
( 2 − t ) ⋅ f ( 2 − t ) ↔ 2 F ( − j w ) e − j 2 w + [ j F ′ ( − j w ) e − j 2 w − 2 F ( − j w ) e − j 2 w ] = j F ′ ( − j w ) e − j 2 w (2-t)\cdot f(2-t)\leftrightarrow 2F(-jw)e^{-j2w}+[jF'(-jw)e^{-j2w}-2F(-jw)e^{-j2w}]=jF'(-jw)e^{-j2w} (2t)f(2t)2F(jw)ej2w+[jF(jw)ej2w2F(jw)ej2w]=jF(jw)ej2w

2 补充:二倍角以及积化和差公式

{ c o s α ⋅ c o s β = 1 2 [ c o s ( α + β ) + c o s ( α − β ) ] 【调制】 s i n α ⋅ s i n β = − 1 2 [ c o s ( α + β ) − c o s ( α − β ) ] c o s α ⋅ s i n β = 1 2 [ s i n ( α + β ) − s i n ( α − β ) ] s i n α ⋅ c o s β = 1 2 [ s i n ( α + β ) + s i n ( α − β ) ] \begin{cases} cos\alpha \cdot cos\beta=\frac{1}{2}[cos(\alpha+\beta)+cos(\alpha-\beta)]【调制】\\ sin\alpha \cdot sin\beta=-\frac{1}{2}[cos(\alpha+\beta)-cos(\alpha-\beta)]\\ cos\alpha \cdot sin\beta=\frac{1}{2}[sin(\alpha+\beta)-sin(\alpha-\beta)]\\ sin\alpha \cdot cos\beta=\frac{1}{2}[sin(\alpha+\beta)+sin(\alpha-\beta)]\\ \end{cases} cosαcosβ=21[cos(α+β)+cos(αβ)]【调制】sinαsinβ=21[cos(α+β)cos(αβ)]cosαsinβ=21[sin(α+β)sin(αβ)]sinαcosβ=21[sin(α+β)+sin(αβ)]

s i n ( 2 α ) = 2 s i n α ⋅ c o s α sin(2\alpha)=2sin\alpha\cdot cos\alpha sin(2α)=2sinαcosα
{ c o s ( 2 α ) = 2 c o s 2 α − 1 = 1 − 2 s i n 2 α = c o s 2 α − s i n 2 α c o s 2 α = c o s ( 2 α ) + 1 2 s i n 2 α = 1 − c o s ( 2 α ) 2 \begin{cases} cos(2\alpha)=2cos^2\alpha-1=1-2sin^2\alpha=cos^2\alpha-sin^2\alpha\\ cos^2\alpha=\frac{cos(2\alpha)+1}{2}\\ sin^2\alpha=\frac{1-cos(2\alpha)}{2}\\ \end{cases} cos(2α)=2cos2α1=12sin2α=cos2αsin2αcos2α=2cos(2α)+1sin2α=21cos(2α)

t a n ( 2 α ) = 2 t a n α 1 − t a n 2 α tan(2\alpha)=\frac{2tan\alpha}{1-tan^2\alpha} tan(2α)=1tan2α2tanα

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值