一、基本思想
🍘Prim算法是一种用于在加权无向图中寻找最小生成树(MST, Minimum Spanning Tree)的贪心算法。最小生成树是指连接图中所有顶点的边的权重之和最小的树。
🍙Prim算法的核心思想是:从任意一个顶点开始,每次选择一条连接已选顶点集合和未选顶点集合的最小权重边,将该边加入生成树,并将对应的顶点加入已选集合。
二、算法步骤
🍑1.初始化
①选择一个起始顶点
②将该顶点加入已选集合
③初始化所有其他顶点到已选集合的最小距离为无穷大
🍒2.重复以下步骤直到所有顶点都被选中
①找出连接已选集合和未选集合的最小权重边
②将该边加入最小生成树
③将对应的顶点加入已选集合
④更新未选顶点到已选集合的最小距离
三、典型例题
【问题描述】
已知含有n个顶点的带权连通无向图,采用邻接矩阵存储,邻接矩阵以三元组的形式给出,只给出不包括主对角线元素在内的下三角形部分的元素,且不包括不相邻的顶点对。请采用Prim算法,求该连通图从1号顶点出发的最小生成树的权值之和。
【输入形式】
第一行给出结点个数n和三元组的个数count,以下每行给出一个三元组,数之间用空格隔开。(注意这里顶点的序号是从1到n,而不是0到n-1,程序里要小心!)
【输出形式】
求解的最小生成树的各条边、边的权值之和
【样例输入】
5 8
2 1 7
3 1 6
3 2 8
4 1 9
4 2 4
4 3 6
5 2 4
5 4 2
【样例输出】1-3:6
3-4:6
4-5:2
4-2:4
18
#include<bits/stdc++.h>
using namespace std;
#define max 100 // 定义最大顶点数
// 顶点结构体(存储权值)
typedef struct
{
int data; // 权值(这里用于存储边的权重)
}node;
// 邻接矩阵结构体
typedef struct
{
node arcs[max][max]; // 邻接矩阵,存储边权值
int vexnum, arcnum; // 顶点数和边数
}Matrix;
// Prim算法辅助结构体
struct
{
int adjvex; // 存储当前顶点到MST的最小边的另一端顶点
int lowcost; // 存储当前顶点到MST的最小边的权值
}closedge[max]; // 辅助数组,用于记录各顶点到MST的最小权值边
// 在closedge数组中找到lowcost最小的顶点(未加入MST的)
int minnum(Matrix g)
{
int min = 100000; // 初始化为一个大数
int c;
for(int i = 1; i <= g.vexnum; i++)
{
// 找到未加入MST(lowcost≠0)且权值最小的顶点
if(min > closedge[i].lowcost && closedge[i].lowcost != 0)
{
min = closedge[i].lowcost;
c = i; // 记录顶点编号
}
}
return c;
}
// Prim算法核心函数(从顶点u开始构建最小生成树)
void mintree(Matrix g, int u)
{
int sum = 0; // 记录最小生成树的总权值
closedge[u].lowcost = 0; // 将起始顶点u加入MST
// 初始化closedge数组
for(int i = 1; i <= g.vexnum; i++)
{
if(i != u)
{
closedge[i].adjvex = u; // 初始时所有顶点都与u相连
closedge[i].lowcost = g.arcs[u][i].data; // 存储u到各顶点的权值
}
}
// 需要选择n-1条边(n是顶点数)
for(int e = 1; e <= g.vexnum-1; e++)
{
int v = minnum(g); // 找到当前离MST最近的顶点v
u = closedge[v].adjvex; // 获取v连接的MST中的顶点u
// 输出选择的边及其权值
cout << u << '-' << v << ':';
cout << closedge[v].lowcost << endl;
sum += closedge[v].lowcost; // 累加总权值
closedge[v].lowcost = 0; // 将v加入MST
// 更新closedge数组
for(int i = 1; i <= g.vexnum; i++)
{
// 如果v到i的权值小于当前记录的最小权值
if(g.arcs[v][i].data < closedge[i].lowcost)
{
closedge[i].lowcost = g.arcs[v][i].data; // 更新最小权值
closedge[i].adjvex = v; // 更新连接顶点
}
}
}
cout << sum << endl; // 输出最小生成树的总权值
}
int main()
{
int n, m; // n-顶点数,m-边数
cin >> n >> m;
Matrix g;
g.vexnum = n;
g.arcnum = m;
// 初始化邻接矩阵(权值设为一个大数,表示无穷大)
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= n; j++)
{
g.arcs[i][j].data = 100000;
}
}
// 输入边信息(无向图)
for(int i = 1; i <= m; i++)
{
int a, b, weight;
cin >> a >> b >> weight;
g.arcs[a][b].data = weight;
g.arcs[b][a].data = weight; // 无向图,对称赋值
}
mintree(g, 1); // 从顶点1开始构建最小生成树
return 0;
}