机器学习中的ground truth

本文深入探讨了机器学习中groundtruth的概念及其在全监督学习中的应用,解释了损失函数如何通过比较预测结果与groundtruth来评估模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ground truth就是参考标准,一般用来做误差量化。比方说要根据历史数据预测某一时间的温度,ground truth就是那个时间的真实温度。error就是(predicted temperature - real temprature)。

在全监督学习中,数据是有标签(label)的的,以(x, t)的形式出现,其中x是输入数据,t是label。正确的t标签是ground truth, 错误的标签则不是。


由模型函数的数据则是由(x, y)的形式出现的。其中x为之前的输入数据,y为模型预测的值。

标注会和模型预测的结果作比较。在损耗函数中会将y 和 t 作比较,从而计算损耗(量化预测值与真实值的差别)。 比如在最小方差中:

\frac{1}{2m}  \sum_{i=1}^{m} (y - t)^2

因此如果预测标签不是ground truth,那么loss的计算将会产生误差,从而影响到模型质量。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值