pyalgotrade教程2--第一笔交易

标签: pyalgotrade 量化投资
8989人阅读 评论(2) 收藏 举报
分类:

        最快的速度扫描了一遍pyalgotrade的文档,从可理解性角度来讲,确实比backtrader好很多,但是功能方面似乎就有缺失了。功能缺失也有好处,就是能够更加灵活,不用再受到文档描述不清楚,不了解功能怎么用的痛苦了吧。

1.pyalgotrade的交易

        这里,还是老样子,用简单的SMA策略来学习一下pyalgotrade的基本交易方法。当现在价格上穿SMA时,开多单;当现在的价格,下穿SMA时,平掉先前的多头头寸。

    def onBars(self, bars):# 每一个数据都会抵达这里,就像becktest中的next
        # SMA的计算存在窗口,所以前面的几个bar下是没有SMA的数据的.
        if self.__sma[-1] is None:
            return
        #bar.getTyoicalPrice = (bar.getHigh() + bar.getLow() + bar.getClose())/ 3.0

        bar = bars[self.__instrument]
        # If a position was not opened, check if we should enter a long position.
        if self.__position is None:# 如果手上没有头寸,那么
            if bar.getPrice() > self.__sma[-1]:
                # 开多,如果现价大于移动均线,且当前没有头寸.
                self.__position = self.enterLong(self.__instrument, 100, True)
        # 当前有多头头寸,平掉多头头寸.
        elif bar.getPrice() < self.__sma[-1] and not self.__position.exitActive():
            self.__position.exitMarket()
        这一部分基本就是交易逻辑。

enterLong(self.__instrument, 100, True)
        这就是开多单的命令,第一个就是开多单的标的,100是下单数目,最后一个是allOrNone参数,也就是说,是不是要么全部成交,要么一个不成,默认是false。

与backtrader一样,也存在各种各样的订单监听函数,

    def onEnterOk(self, position):
        execInfo = position.getEntryOrder().getExecutionInfo()
        self.info("BUY at %.2f" % (execInfo.getPrice()))

    def onEnterCanceled(self, position):
        self.__position = None

    def onExitOk(self, position):
        execInfo = position.getExitOrder().getExecutionInfo()
        self.info("SELL at $%.2f" % (execInfo.getPrice()))
        self.__position = None

    def onExitCanceled(self, position):
        # If the exit was canceled, re-submit it.
        self.__position.exitMarket()

        基本都是大同小异,功能上没有什么实质性区别。

2.SMA策略示例完整代码

# coding=utf-8
from pyalgotrade import strategy
from pyalgotrade.bar import Frequency
from pyalgotrade.barfeed.csvfeed import GenericBarFeed
from pyalgotrade.technical import ma
# 1.构建一个策略
class MyStrategy(strategy.BacktestingStrategy):
    def __init__(self, feed, instrument):
        super(MyStrategy, self).__init__(feed)
        self.__position  = None
        self.__sma = ma.SMA(feed[instrument].getCloseDataSeries(), 150)
        self.__instrument = instrument
        self.getBroker()
    def onEnterOk(self, position):
        execInfo = position.getEntryOrder().getExecutionInfo()
        self.info("BUY at %.2f" % (execInfo.getPrice()))

    def onEnterCanceled(self, position):
        self.__position = None

    def onExitOk(self, position):
        execInfo = position.getExitOrder().getExecutionInfo()
        self.info("SELL at $%.2f" % (execInfo.getPrice()))
        self.__position = None

    def onExitCanceled(self, position):
        # If the exit was canceled, re-submit it.
        self.__position.exitMarket()


    def onBars(self, bars):# 每一个数据都会抵达这里,就像becktest中的next
        # SMA的计算存在窗口,所以前面的几个bar下是没有SMA的数据的.
        if self.__sma[-1] is None:
            return
        #bar.getTyoicalPrice = (bar.getHigh() + bar.getLow() + bar.getClose())/ 3.0

        bar = bars[self.__instrument]
        # If a position was not opened, check if we should enter a long position.
        if self.__position is None:# 如果手上没有头寸,那么
            if bar.getPrice() > self.__sma[-1]:
                # 开多,如果现价大于移动均线,且当前没有头寸.
                self.__position = self.enterLong(self.__instrument, 100, True)
        # 当前有多头头寸,平掉多头头寸.
        elif bar.getPrice() < self.__sma[-1] and not self.__position.exitActive():
            self.__position.exitMarket()

# 2.获得回测数据,官网来源于yahoo,由于墙的关系,我们用本地数据
feed = GenericBarFeed(Frequency.DAY, None, None)
feed.addBarsFromCSV("fd", "fd.csv")

# 3.把策略跑起来

myStrategy = MyStrategy(feed, "fd")
myStrategy.run()
myStrategy.info("Final portfolio value: $%.2f" % myStrategy.getResult())
        最后,我们看到把myStrategy.getResult()输出,就可以看到最后我们的资产净值。
2015-08-14 00:00:00 strategy [INFO] BUY at 3976.41
2015-08-19 00:00:00 strategy [INFO] SELL at $3646.80
2016-07-13 00:00:00 strategy [INFO] BUY at 3049.51
2016-08-02 00:00:00 strategy [INFO] SELL at $2950.08
2016-08-03 00:00:00 strategy [INFO] BUY at 2963.22
2016-12-30 00:00:00 strategy [INFO] Final portfolio value: $1394503.20




查看评论

pyalgotrade教程5--多标的策略

pyalgotrade相比于zipline而言,对于多个标的的投资,似乎是薄弱了一点,但也并不是不行呀。既然是多标的策略,那么肯定有多个csv的add,其实逻辑是很简单,就直接上demo吧,反正很好理...
  • qtlyx
  • qtlyx
  • 2017-06-26 21:17:01
  • 2036

pyalgotrade教程1--第一个demo

之前一直使用backtest作为回测的平台,但是近来觉得,backtest虽然在有些设计上很精妙,但是官方demo中都有很多细节性的错误,而且很多功能描述模糊,以至于,之前实现日内突破策略的时候,一直...
  • qtlyx
  • qtlyx
  • 2017-06-23 15:08:21
  • 5945

pyalgotrade教程2--第一笔交易

最快的速度扫描了一遍pyalgotrade的文档,从可理解性角度来讲,确实比backtrader好很多,但是功能方面似乎就有缺失了。功能缺失也有好处,就是能够更加灵活,不用再受到文档描述不清楚,不了解...
  • qtlyx
  • qtlyx
  • 2017-06-24 14:11:42
  • 8989

pyalgotrade教程4--broker设置:交易费用,滑点模型

前面,我们完全没有考虑交易的手续费、交易的滑点等等。而实际在回测的时候,这些都是要实实在在考虑的因素。pyalgotrade里面通过实现一个broker类,来完成这一系列的设置。 1.broker设置...
  • qtlyx
  • qtlyx
  • 2017-06-25 17:45:39
  • 2748

PyAlgoTrade框架研究

近研究量化交易,看了几个回测的框架,最后盯上 PyAlgoTrade 这个项目。感觉很不错,支持 策略回测和实盘交易,提供全面的技术分析接口,算是python的量化交易框架里比较出色的作品。所以...
  • IAlexanderI
  • IAlexanderI
  • 2017-04-19 14:36:13
  • 1042

pyalgotrade学习-安装-坑1---------python学习笔记33

常规方法安装之后,如果在引用:from pyalgotrade.tools import yahoofinance 报错解决办法: 1、卸载         pip uninstall pyalg...
  • qq_26948675
  • qq_26948675
  • 2017-01-11 17:43:25
  • 3048

pyalgotrade教程3--策略结果可视化与评价指标

pyalgotrade教程3--可视化与评价指标
  • qtlyx
  • qtlyx
  • 2017-06-24 14:51:32
  • 3086

Tushare + pyalgotrade + pandas 环境搭建(MAC环境)

Tushare 环境搭建(MAC环境)简介TuShare是一个免费、开源的python财经数据接口包。安装依赖库 1.安装pandassudo pip install pandas2.安装lxmlsu...
  • mosenyang
  • mosenyang
  • 2016-03-08 23:28:19
  • 4428

量化分析:把Tushare数据源,规整成PyalgoTrade所需格式

量化分析:把Tushare数据源,规整成PyalgoTrade所需格式 对A股市场趋势进行分析,首先必须确定数据来源。如果只想做日k线、周k线的技术分析,可以用PyalgoTrade直接从yahoo...
  • lawme
  • lawme
  • 2016-05-26 01:16:49
  • 8936

pyalgotrade-坑2-slippage错误-------python学习笔记34

python3.5版本:            pip install pyalgotrade之后           from pyalgotrade import strategy 表示  ...
  • qq_26948675
  • qq_26948675
  • 2017-01-25 11:24:40
  • 1451
    个人资料
    专栏达人 持之以恒
    等级:
    访问量: 38万+
    积分: 5204
    排名: 6622
    欢迎

    个人微信号:luxiaoran0178

    量化知乎专栏:https://zhuanlan.zhihu.com/lyx-quant

    个人邮箱:qtluyixiao@163.com

    个人运营公众号:请搜索:tebs

    博客专栏
    最新评论