Machine Learning第三讲[Logistic回归] --(三)多元分类

多元分类策略
本文介绍了一种将二元分类拓展到多元分类的方法——一对多(One-vs-all)策略。通过将每个类别与其他所有类别视为二元分类问题,可以训练多个分类器来预测每个类别的概率。最终,选择具有最高概率的类别作为预测结果。

内容来自Andrew老师课程Machine Learning的第三章内容的Multiclass Classification部分。

一、Multiclass Classification: One-vs-all(多元分类:一对多)

(1)下图左边是二元分类的图形,右边是三元分类的图形(代表多元分类)。在二元分类中,我们可以划出一条拟合曲线(直线、曲线、圆或者椭圆等),那么在多元分类中,我们不能简单的画出拟合曲线,那么我们该怎样进行预测呢,怎样把二元分类应用到多元分类中呢?
这里写图片描述

(2)如下图,
右1是将三角形看做是一个分类,将其他所有分类看作是另一个分类,那么就将这个多元分类的模型变成了二元分类,利用这个二元分类预测出三角形的概率,即是y=1的概率。
右2是将长方形看做是一个分类,将其他所有分类看作是另一个分类,那么就将这个多元分类的模型变成了二元分类,利用这个二元分类预测出长方形的概率,即是y=2的概率。
右3是将叉号看做是一个分类,将其他所有分类看作是另一个分类,那么就将这个多元分类的模型变成了二元分类,利用这个二元分类预测出叉号的概率,即是y=3的概率。
这里写图片描述

(3)分别将这些概率算出来之后,我们怎么知道我们的预测值是哪个呢?选择这些概率中的最大值作为预测值。
即:

y{0,1,..,n}h(0)θ(x)=P(y=0|x;θ)h(1)θ(x)=P(y=1|x;θ)...h(n)θ(x)=P(y=n|x;θ)prediction=maxi(h(i)θ(x))y∈{0,1,..,n}hθ(0)(x)=P(y=0|x;θ)hθ(1)(x)=P(y=1|x;θ)...hθ(n)(x)=P(y=n|x;θ)prediction=maxi(hθ(i)(x))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值