在随机信号过程中,总能听到这三个相关概念,这次具体的把他们表达的含义以及实际的物理意义弄清楚;
1、平稳过程
从通俗意义上去理解,平稳过程指的是统计特性不随时间的推移而改变的一类随机过程。随机过程的统计特性一般通过有限维分布和数字特征进行刻画。我们根据这些不变的特征,给出两种平稳过程的定义,即严平稳过程和宽平稳过程。
1.1 严平稳
严平稳过程:对于随机过程 ,如果对任意 k≥1k≥1 和 t1,t2,⋯,tk∈Tt1, 以及 h∈T 都有
则称该随机过程为严平稳过程或强平稳过程。
严平稳过程的任意有限维分布都不随时间的推移而改变。然而实际中随机过程的有限维分布往往很难确定,所以我们一般研究的平稳过程,都是在数字特征尤其是一阶矩和二阶矩中体现出的平稳性。
1.2 宽平稳
则称该随机过程为宽平稳过程或弱平稳过程。
1.3 总结
严平稳和宽平稳的关系,可以用个图简单表示如下:
严平稳过程和宽平稳过程的关系我们只需要记住以下两条:
- 如果严平稳过程的二阶矩存在且有限,那么它一定是宽平稳过程,反之则不一定。
- 如果宽平稳过程是正态过程,那么它一定是严平稳过程。
宽平稳过程一定是二阶矩过程。以后提到的平稳过程,除非特别指明,否则都指的是宽平稳过程。
2、各态历经的定义
通俗地说,就是指经历各种状态,在通信理论中,对于一个平稳随机过程,如果统计平均值等于时间平均值,统计自相关函数等于时间自相关函数则称之为各态历经性的平稳随机过程。
各态历经的信号一定是平稳的,但平稳信号不一定具有各态历经性
3 时间平均
4、均值和自相关各态历经定理
4.1 均值各态历经
4.2 自相关各态历经
5、相关函数定义
参考:
应用随机过程07:平稳过程 - 这个XD很懒 - 博客园 (cnblogs.com)https://www.cnblogs.com/lixddd/p/15951011.html#%E7%AC%AC%E4%B8%83%E8%AE%B2-%E5%B9%B3%E7%A8%B3%E8%BF%87%E7%A8%8B离散随机信号处理-第一章:离散随机信号 - 知乎 (zhihu.com)
https://zhuanlan.zhihu.com/p/668066786随机过程-平稳随机过程 - 知乎 (zhihu.com)
https://zhuanlan.zhihu.com/p/664974025