How to use a KdTree to search

在本教程中,我们将讨论如何使用KdTree查找特定点或位置的K个最近邻居,然后我们还将讨论如何查找用户指定的某个半径内的所有邻居(在本例中为随机)。

理论入门

k-d树或k维树是计算机科学中用于在具有k维度的空间中组织一些点的数据结构。它是一个二进制搜索树,其上施加了其他约束。 K-d树对范围和最近邻搜索非常有用。出于我们的目的,我们通常只处理三维点云,因此我们所有的k-d树都是三维的。 k-d树的每个级别使用垂直于相应轴的超平面沿着特定维度分割所有子节点。在树的根部,所有子节点将基于第一维分割(即,如果第一维坐标小于它将在左子树中的根,并且如果它大于根,则它将显然在正确的子树)。树中的每个级别在下一个维度上划分,一旦所有其他维度都耗尽,则返回到第一个维度。它们构建k-d树的最有效方法是使用分区方法,例如Quick Sort用于将中间点放置在根处,并且一切具有较小的一维值,左侧较大,右侧较大。然后,您可以在左侧和右侧子树上重复此过程,直到您要分区的最后一棵树仅由一个元素组成。

可以用下图更形象的表示这个过程:

Example of a 2-d k-d tree

 

 在您喜欢的编辑器中创建一个文件,比如kdtree_search.cpp,并将以下内容放入:

#include <pcl/point_cloud.h>
#include <pcl/kdtree/kdtree_flann.h>

#include <iostream>
#include <vector>
#include <ctime>

int
main (int argc, char** argv)
{
  srand (time (NULL));

  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);

  // Generate pointcloud data
  cloud->width = 1000;
  cloud->height = 1;
  cloud->points.resize (cloud->width * cloud->height);

  for (size_t i = 0; i < cloud->points.size (); ++i)
  {
    cloud->points[i].x = 1024.0f * rand () / (RAND_MAX + 1.0f);
    cloud->points[i].y = 1024.0f * rand () / (RAND_MAX + 1.0f);
    cloud->points[i].z = 1024.0f * rand () / (RAND_MAX + 1.0f);
  }

  pcl::KdTreeFLANN<pcl::PointXYZ> kdtree;

  kdtree.setInputCloud (cloud);

  pcl::PointXYZ searchPoint;

  searchPoint.x = 1024.0f * rand () / (RAND_MAX + 1.0f);
  searchPoint.y = 1024.0f * rand () / (RAND_MAX + 1.0f);
  searchPoint.z = 1024.0f * rand () / (RAND_MAX + 1.0f);

  // K nearest neighbor search

  int K = 10;

  std::vector<int> pointIdxNKNSearch(K);
  std::vector<float> pointNKNSquaredDistance(K);

  std::cout << "K nearest neighbor search at (" << searchPoint.x 
            << " " << searchPoint.y 
            << " " << searchPoint.z
            << ") with K=" << K << std::endl;

  if ( kdtree.nearestKSearch (searchPoint, K, pointIdxNKNSearch, pointNKNSquaredDistance) > 0 )
  {
    for (size_t i = 0; i < pointIdxNKNSearch.size (); ++i)
      std::cout << "    "  <<   cloud->points[ pointIdxNKNSearch[i] ].x 
                << " " << cloud->points[ pointIdxNKNSearch[i] ].y 
                << " " << cloud->points[ pointIdxNKNSearch[i] ].z 
                << " (squared distance: " << pointNKNSquaredDistance[i] << ")" << std::endl;
  }

  // Neighbors within radius search

  std::vector<int> pointIdxRadiusSearch;
  std::vector<float> pointRadiusSquaredDistance;

  float radius = 256.0f * rand () / (RAND_MAX + 1.0f);

  std::cout << "Neighbors within radius search at (" << searchPoint.x 
            << " " << searchPoint.y 
            << " " << searchPoint.z
            << ") with radius=" << radius << std::endl;


  if ( kdtree.radiusSearch (searchPoint, radius, pointIdxRadiusSearch, pointRadiusSquaredDistance) > 0 )
  {
    for (size_t i = 0; i < pointIdxRadiusSearch.size (); ++i)
      std::cout << "    "  <<   cloud->points[ pointIdxRadiusSearch[i] ].x 
                << " " << cloud->points[ pointIdxRadiusSearch[i] ].y 
                << " " << cloud->points[ pointIdxRadiusSearch[i] ].z 
                << " (squared distance: " << pointRadiusSquaredDistance[i] << ")" << std::endl;
  }


  return 0;
}

 

cmake_minimum_required(VERSION 2.8 FATAL_ERROR)

project(kdtree_search)

find_package(PCL 1.2 REQUIRED)

include_directories(${PCL_INCLUDE_DIRS})
link_directories(${PCL_LIBRARY_DIRS})
add_definitions(${PCL_DEFINITIONS})

add_executable (kdtree_search kdtree_search.cpp)
target_link_libraries (kdtree_search ${PCL_LIBRARIES})

 

### Point Cloud DBSCAN Clustering Implementation in C++ For implementing DBSCAN (Density-Based Spatial Clustering of Applications with Noise) on point clouds using C++, several libraries and resources can be utilized to facilitate this process. One prominent library is PCL (Point Cloud Library), which offers extensive support for various operations involving point cloud data, including clustering algorithms like DBSCAN. #### Utilizing the Point Cloud Library (PCL) The PCL provides a robust framework specifically designed for handling large datasets such as those encountered when working with LiDAR scans or other types of 3D sensor inputs. Within PCL, there exists an implementation of the DBSCAN algorithm that can directly operate over point cloud structures without requiring manual coding from scratch[^1]. Here’s how one might use PCL's built-in functionality: ```cpp #include <pcl/point_cloud.h> #include <pcl/kdtree/kdtree_flann.h> #include <pcl/features/normal_3d.h> #include <pcl/filters/passthrough.h> #include <pcl/segmentation/sac_segmentation.h> #include <pcl/io/pcd_io.h> #include <pcl/visualization/cloud_viewer.h> #include <pcl/console/time.h> // Assuming 'cloud' contains your input point cloud. pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>); // Create search tree object used by DBSCAN pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>); tree->setInputCloud(cloud); std::vector<pcl::PointIndices> cluster_indices; pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec; ec.setClusterTolerance(0.02); // 2cm distance threshold between points within clusters ec.setMinPointsPerCluster(100); // Minimum number of points required per cluster ec.setMaxClusterSize(25000); // Maximum size limit for each detected cluster ec.setSearchMethod(tree); ec.setInputCloud(cloud); ec.extract(cluster_indices); ``` This code snippet demonstrates setting up parameters necessary for performing DBSCAN-based segmentation tasks efficiently while leveraging pre-built functionalities provided by PCL. In addition to exploring implementations through specialized libraries like PCL, researchers often publish their work at conferences mentioned earlier [^2], where novel approaches towards improving existing methods may also provide valuable insights into more advanced techniques beyond standard applications found within general-purpose software packages.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值