OpenAI取消GPT-4 Turbo,所有每日限制!

OpenAI近期取消了GPT-4Turbo的速率限制,提高了处理能力。文章探讨了速率限制的原因,包括防止滥用、公平访问和管理基础设施负载,并提供了查看和避免速率限制的方法,如指数退避重试策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2月17日,OpenAI在社交平台宣布,取消了GPT-4 Turbo的所有每日限制,并将速率限制提升1倍。现在,每分钟可处理高达150万TPM的数据

OpenAI这一周的连续王炸组合拳,从ChatGPT增加 “记忆存储”,到视频模型Sora再到GPT-4 Turbo全面取消每日限制,打的谷歌、Meta有点晕头转向抢尽风头。

对于用户来说,只希望巨头之间撕的更凶一些,这样咱们看到的、得到的、用到的也就更多。

2023年初,OpenAI的估值只有200多亿美元,年底暴涨至800亿美元,很多人认为这也太虚高了。看了前天推出的Sora后,多数人沉默了感觉OpenAI的估值太保守了。

为什么OpenAI要进行速率限制

OpenAI表示,速率限制是其API对开发者或产品用户,在指定时间段内访问OpenAI服务器的次数增加的一种服务限制。这样做主要有以下几个原因。

1)有助于防止 API 被滥用或误用。例如,黑客可能会向 API 提出大量请求,致使服务器超载或宕机。通过设置速率限制,可以防止此类事情发生。

2)速率限制有助于确保,每个人都能公平地访问 API。如果一个人或一个组织频繁提出过多的服务请求,可能会导致其他所有人都无法使用 API。

通过限制单个用户的请求数量,OpenAI 可以确保大多数人都有机会使用 API,而不会出现速度变慢的情况。

3)速率限制可有效帮助 OpenAI 管理其基础设施的总负载。如果对 API 的请求急剧增加,可能会给服务器造成负担,出现服务中断等严重问题。

去年,OpenAI刚发布自定义GPT时,就发生过一次类似事情。

OpenAI的速率限制,有哪些种类

目前,OpenAI一共使用了5种速率限制:RPM(每分钟请求数)、RPD(每天请求数)、TPM(每分钟tokens数量)、TPD(每天tokens数量)和IPM(每分钟图像数量)。

图片

任何一种请求都可能触发速率限制,例如,用户向 ChatCompletions 端点发送 20 个请求,其中只有 100 个tokens,这样就会触发速率限制(假如 RPM 限制是 20);即使你在这20 个请求中没有发送 150k 的tokens。

简单来说,这五种限制,你只要满足一种就会触发。

需要注意的是,速率限制是对组织级别实施的,对个体用户没啥影响。速率限制因所使用的模式而异,组织每月在 API 上的总支出也有"使用限制"。

如何查看自己的限制等级

用户可以在账户设置的 "限制 "功能,查看组织的速率和使用限制。

随着你对 OpenAI 的API 的使用以及组织在AP上的费用支出的增加,会自动升级你的使用级别。目前,一共有5个等级。

图片

如何避免速率限制

OpenAI的Cookbook发布了一个攻略,帮助大家避免出现速率限制的错误,以及一个用于在批处理 API 请求时,保持速率限制的示例Python 脚本。

地址:https://cookbook.openai.com/examples/how_to_handle_rate_limits

OpenAI表示,最简单的避免速率限制方法,就是使用“指数退避重试”。

主要通过动态调整重试等待时间,这种机制可有效减少服务器的负载,提高请求成功的可能性,并对系统资源进行高效管理。

图片

代码展示

指数退避重试能在连续的失败尝试之间引入逐渐增加的延迟,以减少对服务器或网络资源的压力,增加后续尝试成功的可能性。

但使用指数退避重试时,也需要注意几个事项:1)重试次数和最大延迟时间的限制,以防止无休止的重试;2)合理设置最小延迟和倍数,以适应具体应用场景的需求;

3)记录和监控重试事件,以便于故障排查和性能优化;4)考虑请求的幂等性,确保重试不会引起数据错误或不一致。‍

本文素材来源OpenAI社交平台账号,如有侵权请联系删除

### 比较OpenAI GPT-4GPT-4o模型 #### 特征差异 GPT-4代表了OpenAI在大型语言模型技术上的最新进展,具有更高的参数量和改进的架构设计,旨在提供更为流畅自然的语言理解和生成能力。相比之下,关于GPT-4o的信息较少,通常认为这是针对特定优化版本或是内部使用的变体之一[^1]。 #### 性能对比 具体到性能方面,在公开资料中并没有直接提及GPT-4o的具体评测数据。然而,基于一般模式,可以推测GPT-4o可能是在原有基础上做了针对性调整或优化,比如提升了某些应用场景下的效率或者降低了资源消耗等特性。而标准版GPT-4则经过大规模预训练并广泛应用于多种任务场景,其泛化能力和适应范围更加广阔。 #### 应用领域 由于缺乏详细的官方说明文档来描述两者之间的区别,对于想要深入了解两者的不同之处以及各自适用场景的人来说存在一定难度。但从逻辑推断来看,如果存在所谓的"GPT-4o"版本,则很可能是为了满足特殊需求而定制开发出来的分支版本;它或许会在特定行业应用中有更好的表现,或者是专门为某类计算环境进行了适配性改造。 ```python # 这里仅展示如何通过Python代码加载两个假设存在的模型进行简单推理演示, # 实际操作需依据实际可用API接口编写相应程序。 import transformers as trf model_name_4 = "openai/gpt-4" tokenizer_4 = trf.AutoTokenizer.from_pretrained(model_name_4) model_4 = trf.AutoModelForCausalLM.from_pretrained(model_name_4) # 假设GPT-4o也存在于Hugging Face Model Hub中 model_name_4o = "openai/gpt-4o" tokenizer_4o = trf.AutoTokenizer.from_pretrained(model_name_4o) model_4o = trf.AutoModelForCausalLM.from_pretrained(model_name_4o) text_input = ["Tell me about the weather today."] input_ids_4 = tokenizer_4(text_input, return_tensors="pt").input_ids output_4 = model_4.generate(input_ids_4) input_ids_4o = tokenizer_4o(text_input, return_tensors="pt").input_ids output_4o = model_4o.generate(input_ids_4o) print(f'Output from GPT-4:\n{tokenizer_4.decode(output_4[0], skip_special_tokens=True)}') print(f'\nOutput from GPT-4o:\n{tokenizer_4o.decode(output_4o[0], skip_special_tokens=True)}') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值