周志华《机器学习》西瓜书 小白Python学习笔记(七) ———— 第六章 支持向量机SVM

本文介绍了支持向量机(SVM)的基本概念,包括SVM的目标是找到最大间隔的线性分类器。通过转换为Lagrange对偶问题,利用拉格朗日乘子法解决凸二次规划问题。核函数的引入解决了非线性可分数据的问题,常见的核函数有线性、多项式、高斯和Sigmoid。此外,文章还讨论了软间隔的概念,允许一定比例的样本分类错误,以提高模型的泛化能力。
摘要由CSDN通过智能技术生成

什么是SVM

支持向量机(support vector machines,SVM)的基本定义为在特征空间上的间隔最大的线性分类器,那么什么是间隔最大的线性分类器呢?
在这里插入图片描述
看这张图,样本空间为 { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x n , y n ) } \{(x_1,y_1),(x_2,y_2),...,(x_n,y_n)\} { (x1,y1),(x2,y2),...,(xn,yn)}n个点, y y y表示标签取值为-1或1,即图中的黑、白两类点,我们试图找到一个超平面将两类点分隔开,如图,设超平面的表达式为 w x + b = 0 \boldsymbol {wx} +b=0 wx+b=0
那么对于黑、白两种点分别有:
{ w x i + b > 0 w x i + b < 0 \left\{\begin{aligned}\boldsymbol {wx_i} +b>0 \\ \boldsymbol {wx_i} +b<0 \end{aligned} \right. { wxi+b>0wxi+b<0
经过 w \boldsymbol w w b b b的放缩可以整理成
{ w x i + b ≥ 1 , y i = 1 w x i + b ≤ − 1 , y i = − 1 \left\{\begin{aligned} & \boldsymbol {wx_i} +b\geq 1,y_i=1& \\ &\boldsymbol {wx_i} +b\leq-1,y_i=-1& \end{aligned} \right. { wxi+b1,yi=1wxi+b1,yi=1
使得两类点中距离这个超平面最近的点有 w x i + b = 1 , − 1 \boldsymbol {wx_i} +b=1,-1 wxi+b=1,1(即图片中标红的的点),这些点对应的就是支持向量
根据数学知识,样本空间内任意一个点 x i \bf x_i xi到这个超平面的距离为
d i = ∣ w x i + b ∣ ∥ w ∥ d_i=\frac{|\boldsymbol {wx_i} +b|}{\|\boldsymbol{w}\|} di=wwxi+b
研究支持向量对应的点到超平面的距离时,就变成了
d = 1 ∥ w ∥ d=\frac1{\|\boldsymbol{w}\|} d=w1
刚才所说的间隔最大的线性分类器中的“间隔”就是指的这个啦!
最优化函数即为
m a x 1 ∥ w ∥ max\frac1{\|\boldsymbol{w}\|} maxw1
条件是 w w w能将两类点分隔开,即 w x i + b \boldsymbol {wx_i} +b wxi+b y i y_i yi同号,又因为 ∣ w x i + b ∣ ≥ 1 , y = 1 , − 1 |\boldsymbol {wx_i} +b|\geq1,y=1,-1 wxi+b1,y=1,1,所以可以表示为
y i ( w x i + b ) ≥ 1 , i = 1 , … , n y_{i}\left(w x_{i}+b\right) \geq 1, i=1, \ldots, n yi(wxi+b)1,i=1,,n
这就是支持向量机的由来。

SVM求解过程

转化为Lagrange对偶问题

回到之前得到的目标函数:
m a x 1 ∥ w ∥ max\frac1{\|\boldsymbol{w}\|} maxw1
s . t . y i ( w x i + b ) ≥ 1 , i = 1 , … , n s.t. y_{i}\left(w x_{i}+b\right) \geq 1, i=1, \ldots, n s.t.yi(wxi+b)1,i=1,,n
可以转化成:
m i n 1 2 ∥ w ∥ 2 min \frac1{2}{\|\boldsymbol{w}\|}^2 min21w2
s . t . y i ( w x i + b ) ≥ 1 , i = 1 , … , n s.t. y_{i}\left(\boldsymbol{w x}_{i}+b\right) \geq 1, i=1, \ldots, n s.t.yi(wxi+b)1,i=1,,n
对于这个凸二次规划问题,可以通过拉格朗日对偶性质,将其转化为原问题的对偶问题进行求解。首先根据拉格朗日乘子法得到:
L ( w , b , α ) = 1 2 ∥ w ∥ 2 − ∑ i = 1 n α i ( y i ( w x i + b ) − 1 ) \mathcal{L}(w, b, \alpha)=\frac{1}{2}\|w\|^{2}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(w x_{i}+b\right)-1\right) L(w,b,α)=21w2i=1nαi(yi(wxi+b)1)
其中 α i ≥ 0 , i = 1 , 2 , . . . , n \alpha_i\geq0,i=1,2,...,n αi0,i=1,2,...,n
我们令
θ ( w ) = max ⁡ α i ≥ 0 L ( w , b , α ) \theta(w)=\max_{\alpha_i\geq0}\mathcal{L}(w, b, \alpha) θ(w)=αi0maxL(w,b,α)
易知,只有当这个超平面将两类样本全部分隔开即所有约束条件都满足,即 y i ( w x i + b ) ≥ 1 , i = 1 , … , n y_{i}\left(w x_{i}+b\right) \geq 1, i=1, \ldots, n yi(wxi+b)1,i=1,,n时, θ ( w ) = 1 2 ∥ w ∥ 2 \theta(w)=\frac{1}{2}\|w\|^{2} θ(w)=21w

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值