坐标系的变化

本文探讨了坐标系的变化,包括可恢复的平移、旋转和缩放。通过矩阵变换,详细阐述了如何将坐标点从一个坐标系转换到另一个坐标系,并介绍了反向思考,即如何从变化后的坐标系恢复到原始坐标系。同时提到了不可恢复坐标系变化的情况,涉及线性代数中的基概念。
摘要由CSDN通过智能技术生成
坐标系的变化
坐标系能够恢复的变化
  • 平移,坐标系之间存在偏移可以通过平移来使变化后的左边系恢复成原始坐标系
  • 旋转,缩放也是一种可恢复的变化

对于可恢复的变化只需将变化后的坐标系经过一系列变化恢复成原始坐标系,然后将这个变化应用到所以求的点(原始坐标中)即得到在变化坐标系中的点,比较绕
原则所有的变化是基于当前坐标系的

实例一平移


某一点P在xoy坐标系中的值是(x, y), 求在x’o’y’坐标系中的值P’, x’o’y’相对与xoy只做了平移变化,这属于可恢复变化

  • 平移x’o’y’使其与xoy重合,平移变化写成矩阵形式T
  • 将P与T相乘即得P’
实例二旋转

某一点P在xoy坐标系中的值是(x, y), 求在x’o’y’坐标系中的值P’, x’o’y’相对与xoy只做了旋转变化,这属于可恢复变化

同样将变换坐标复原,可的旋转矩阵R,然后将R乘以P得P’

实例三复原变化的综合

某一点P在xoy坐标系中的值是(x, y), 求在x’o’y’坐标系中的值P’, x’o’y’相对与xoy先后做了平移->旋转->缩放,也是可恢复变化
所有的变化是基于当前坐标系的,即旋转变换是基于平移变化后的坐标系,同理缩放变化也是基于平移->旋转后的坐标系
求解步骤:

缩放变化使坐标系恢复至没缩放前,变化矩阵为S

如下式,在当前坐标系的坐标点(X’, Y’),求的坐标系做恢复缩放变化后求得在平移->旋转后的坐标系下的点
[ X ′ , Y ′ , 1 ] T = R ∗ [ X R , Y R , 1 ] T [X', Y', 1]^T = R * [X_R, Y_R, 1]^T [X,Y,1]T=R[XR,YR,1]T

旋转坐标系,变换矩阵为R

如下式,在当前坐标系的坐标点(XR, YR),求的坐标系做恢复缩放和旋转变化后求得在平移后的坐标系下的点
[ X R , Y R , 1 ] T = R ∗ [ X T , Y T , 1 ] T [X_R, Y_R, 1]^T = R * [X_T, Y_T, 1]^T [XR,YR,1]

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值