当需求随机时,常见的库存管理中的订货策略有 (s, S) 策略:当库存水平低于或等于 s 时,订货到 S; 当库存水平高于 s 时,不订货。
若库存成本的递推函数是 k-凸,则 (s, S) 策略为最有订货策略,可以得到最小的期望总成本。
k-convex 的定义1:对于任何 x, 以及任何正数 a, b,满足如下条件:
\begin{equation}K+f(a+x)-f(x)-a\Big\{\frac{f(x)-f(x-b)}{b}\Big\}\geq 0\end{equation}
则为 k-convex.
或写为(定义2):
\begin{equation}K+f(a+x)-f(x)-af'(x)\geq 0\end{equation}
或写为(定义3):
\begin{equation}\mu f(x_1)+(1-\mu)(f(x_2)+K)\geq f(\mu x_1+(1-\mu)x_2)\end{equation}
证明 k-convex 要用到数学归纳法。
一个 K 凸函数的图形如下所示:
这个例子的各参数取值为:
% example: double fixedOrderingCost = 500;
% double proportionalOrderingCost = 0;
% double penaltyCost = 10;
% double[] meanDemand = {9, 23, 53, 29}; //Poisson;
% double holdingCost = 2;
% int maxOrderQuantity = 100;
个人认为:
K 凸函数的几何意义是,图形的波动不超过 K;
即任意两个点 x 与 x+a (a>0), f(x) 与 f(x+a)+K 的连线一定高于 [x, x+a] 区域内的 f(x)图像。
下面的图形反映了定义2的几何意义:
下面的图形反映了定义1的几何意义:
猜想:两个 K 凸函数的最大值仍为 K 凸函数。