库存管理中的 (s, S) 策略,K convex,K 凸

当需求随机时,常见的库存管理中的订货策略有 (s, S) 策略:当库存水平低于或等于 s 时,订货到 S; 当库存水平高于 s 时,不订货。

若库存成本的递推函数是 k-凸,则 (s, S) 策略为最有订货策略,可以得到最小的期望总成本。

k-convex 的定义1:对于任何 x, 以及任何正数 a, b,满足如下条件:

\begin{equation}K+f(a+x)-f(x)-a\Big\{\frac{f(x)-f(x-b)}{b}\Big\}\geq 0\end{equation}

则为 k-convex.

或写为(定义2):

\begin{equation}K+f(a+x)-f(x)-af'(x)\geq 0\end{equation}

或写为(定义3):

\begin{equation}\mu f(x_1)+(1-\mu)(f(x_2)+K)\geq f(\mu x_1+(1-\mu)x_2)\end{equation}

证明 k-convex 要用到数学归纳法。

一个 K 凸函数的图形如下所示:

这个例子的各参数取值为:

% example: double fixedOrderingCost = 500; 
%      double proportionalOrderingCost = 0; 
%      double penaltyCost = 10;
%      double[] meanDemand = {9, 23, 53, 29}; //Poisson;
%      double holdingCost = 2;
%      int maxOrderQuantity = 100; 

个人认为:

K 凸函数的几何意义是,图形的波动不超过 K;

即任意两个点 x 与 x+a (a>0), f(x) 与 f(x+a)+K 的连线一定高于 [x, x+a] 区域内的 f(x)图像。

下面的图形反映了定义2的几何意义:

下面的图形反映了定义1的几何意义:

猜想:两个 K 凸函数的最大值仍为 K 凸函数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心态与习惯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值